Math Problem Statement

Can you evaluate this angle 3*π/2 using six circular functions?*​

Solution

To evaluate the angle 3π2\frac{3\pi}{2} using the six circular functions, we can start by identifying the position of this angle on the unit circle.

  1. Angle in Degrees: 3π2 radians=270\frac{3\pi}{2} \text{ radians} = 270^\circ This angle points directly downward on the unit circle.

  2. Coordinates on the Unit Circle: The coordinates of the point on the unit circle corresponding to 3π2\frac{3\pi}{2} are: (0,1)(0, -1)

  3. Circular Functions: The six circular functions for this angle are:

    • Sine: sin(3π2)=1\sin\left(\frac{3\pi}{2}\right) = -1

    • Cosine: cos(3π2)=0\cos\left(\frac{3\pi}{2}\right) = 0

    • Tangent: tan(3π2)=sin(3π2)cos(3π2)=10 (undefined)\tan\left(\frac{3\pi}{2}\right) = \frac{\sin\left(\frac{3\pi}{2}\right)}{\cos\left(\frac{3\pi}{2}\right)} = \frac{-1}{0} \text{ (undefined)}

    • Cosecant (reciprocal of sine): csc(3π2)=1sin(3π2)=11=1\csc\left(\frac{3\pi}{2}\right) = \frac{1}{\sin\left(\frac{3\pi}{2}\right)} = \frac{1}{-1} = -1

    • Secant (reciprocal of cosine): sec(3π2)=1cos(3π2)=10 (undefined)\sec\left(\frac{3\pi}{2}\right) = \frac{1}{\cos\left(\frac{3\pi}{2}\right)} = \frac{1}{0} \text{ (undefined)}

    • Cotangent (reciprocal of tangent): cot(3π2)=cos(3π2)sin(3π2)=01=0\cot\left(\frac{3\pi}{2}\right) = \frac{\cos\left(\frac{3\pi}{2}\right)}{\sin\left(\frac{3\pi}{2}\right)} = \frac{0}{-1} = 0

  4. Summary of the Circular Functions:

    • sin(3π2)=1\sin\left(\frac{3\pi}{2}\right) = -1
    • cos(3π2)=0\cos\left(\frac{3\pi}{2}\right) = 0
    • tan(3π2)=undefined\tan\left(\frac{3\pi}{2}\right) = \text{undefined}
    • csc(3π2)=1\csc\left(\frac{3\pi}{2}\right) = -1
    • sec(3π2)=undefined\sec\left(\frac{3\pi}{2}\right) = \text{undefined}
    • cot(3π2)=0\cot\left(\frac{3\pi}{2}\right) = 0

If you have any questions or need further details, feel free to ask!

Related Questions:

  1. What are the values of the circular functions for π\pi radians?
  2. How do you convert radians to degrees?
  3. Can you explain the unit circle and its significance in trigonometry?
  4. What is the periodicity of the sine and cosine functions?
  5. How do you determine the signs of the circular functions in different quadrants?

Tip: Always remember the unit circle helps in quickly identifying the values of the circular functions based on the angle's position.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Unit Circle
Circular Functions

Formulas

sin(θ) = y-coordinate on the unit circle
cos(θ) = x-coordinate on the unit circle
tan(θ) = sin(θ) / cos(θ)
csc(θ) = 1/sin(θ)
sec(θ) = 1/cos(θ)
cot(θ) = cos(θ) / sin(θ)

Theorems

-

Suitable Grade Level

Grades 9-12