Math Problem Statement

\lim_{x \to 0} \left( \frac{1}{x^2} - \frac{1}{\sin^2 x} \right).

Solution

To evaluate the limit

limx0(1x21sin2x),\lim_{x \to 0} \left( \frac{1}{x^2} - \frac{1}{\sin^2 x} \right),

let's proceed as follows:

Step-by-Step Solution:

  1. Rewrite the terms using a common denominator:

    1x21sin2x=sin2xx2x2sin2x.\frac{1}{x^2} - \frac{1}{\sin^2 x} = \frac{\sin^2 x - x^2}{x^2 \sin^2 x}.

  2. Recall Taylor series expansion for sinx\sin x around x=0x = 0:

    sinx=xx36+O(x5)as x0.\sin x = x - \frac{x^3}{6} + O(x^5) \quad \text{as } x \to 0.

    Squaring this expansion:

    sin2x=(xx36+O(x5))2=x2x43+O(x6).\sin^2 x = \left( x - \frac{x^3}{6} + O(x^5) \right)^2 = x^2 - \frac{x^4}{3} + O(x^6).

  3. Substitute sin2x\sin^2 x into the expression:

    sin2xx2=(x2x43+O(x6))x2=x43+O(x6).\sin^2 x - x^2 = \left( x^2 - \frac{x^4}{3} + O(x^6) \right) - x^2 = -\frac{x^4}{3} + O(x^6).

    Thus, the numerator becomes:

    sin2xx2x43as x0.\sin^2 x - x^2 \approx -\frac{x^4}{3} \quad \text{as } x \to 0.

  4. Evaluate the denominator:

    x2sin2xx2x2=x4as x0.x^2 \sin^2 x \approx x^2 \cdot x^2 = x^4 \quad \text{as } x \to 0.

  5. Combine the results:

    sin2xx2x2sin2xx43x4=13.\frac{\sin^2 x - x^2}{x^2 \sin^2 x} \approx \frac{-\frac{x^4}{3}}{x^4} = -\frac{1}{3}.

Conclusion:

limx0(1x21sin2x)=13.\lim_{x \to 0} \left( \frac{1}{x^2} - \frac{1}{\sin^2 x} \right) = -\frac{1}{3}.

Would you like more detailed steps on the Taylor series or any related concepts?

Here are 5 related questions to deepen your understanding:

  1. How is the Taylor series expansion for sinx\sin x derived?
  2. Why does the approximation of sinx\sin x work well near x=0x = 0?
  3. Can we evaluate the same limit using L'Hôpital's Rule?
  4. How would this limit change if we replaced sinx\sin x with tanx\tan x?
  5. What happens if we evaluate limx0(1x21cos2x)\lim_{x \to 0} \left( \frac{1}{x^2} - \frac{1}{\cos^2 x} \right)?

Tip: Taylor series expansions are powerful for approximating functions near a point and can simplify complex limit evaluations around that point!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Taylor Series
Trigonometric Functions

Formulas

Taylor series expansion for sin(x): sin(x) = x - x^3/6 + O(x^5)
Limit definition: \lim_{x \to a} f(x) = L
Expression manipulation: \frac{1}{x^2} - \frac{1}{\sin^2 x} = \frac{\sin^2 x - x^2}{x^2 \sin^2 x}

Theorems

Taylor Series Expansion
Limit Laws

Suitable Grade Level

Undergraduate Calculus (Grades 11-12 or first-year college)