Math Problem Statement
Evaluate the iterated integral by converting to polar coordinates.
NOTE: When typing your answers use "th " for θ . ∫6√0∫12−y2√y2x+3y dx dy=∫ba∫dc
functionsequation editor dr dθ
where
a=
0 functionsequation editor b=
pi/4 functionsequation editor c=
0 functionsequation editor d=
3.464 functionsequation editor ∫6√0∫12−y2√y2x+3y dx dy=
Solution
To evaluate the given iterated integral:
we will convert it to polar coordinates. Recall the polar coordinate transformations:
Step 1: Interpret the bounds
- The region of integration is bounded by and .
- These bounds describe a quarter-circle in the first quadrant with a radius of .
Thus, the polar bounds are:
Step 2: Rewrite the function in polar coordinates
The function becomes:
= r^3\sin^2\theta\cos\theta + 3r\sin\theta.$$ ### Step 3: Convert the integral The iterated integral becomes: $$\int_0^{\pi/4} \int_0^{\sqrt{12}} \left(r^3\sin^2\theta\cos\theta + 3r\sin\theta\right) r \, dr \, d\theta.$$ Expanding $$r \cdot r^3$$ gives $$r^4$$, and $$r \cdot 3r$$ gives $$3r^2$$: $$\int_0^{\pi/4} \int_0^{\sqrt{12}} \left(r^4\sin^2\theta\cos\theta + 3r^2\sin\theta\right) \, dr \, d\theta.$$ ### Step 4: Separate the integral We can split this into two integrals: $$\int_0^{\pi/4} \int_0^{\sqrt{12}} r^4\sin^2\theta\cos\theta \, dr \, d\theta + \int_0^{\pi/4} \int_0^{\sqrt{12}} 3r^2\sin\theta \, dr \, d\theta.$$ ### Step 5: Solve the $$r$$-integrals #### First term: $$\int_0^{\sqrt{12}} r^4 \, dr = \left[\frac{r^5}{5}\right]_0^{\sqrt{12}} = \frac{(\sqrt{12})^5}{5} = \frac{12\sqrt{12}}{5}.$$ This makes the first term: $$\frac{12\sqrt{12}}{5} \int_0^{\pi/4} \sin^2\theta\cos\theta \, d\theta.$$ #### Second term: \[ \int_0^{\sqrt{12}} 3r^2 \, dr = 3 \left[\frac{r^3}{3}\right]_0^{\sqrt{12}} = \left[(\sqrt{12})^3\right] = 12\sqrt{12}. \] This makes the second term: $$12\sqrt{12} \int_0^{\pi/4} \sin\theta \, d\theta.$$ ### Step 6: Solve the $$\theta$$-integrals #### For $$\int_0^{\pi/4} \sin^2\theta\cos\theta \, d\theta$$: Use the substitution $$u = \sin\theta$$, so $$du = \cos\theta \, d\theta$$. When $$\theta = 0$$, $$u = 0$$; when $$\theta = \pi/4$$, $$u = \sin(\pi/4) = \frac{\sqrt{2}}{2}$$: $$\int_0^{\pi/4} \sin^2\theta\cos\theta \, d\theta = \int_0^{\sqrt{2}/2} u^2 \, du = \left[\frac{u^3}{3}\right]_0^{\sqrt{2}/2} = \frac{(\sqrt{2}/2)^3}{3} = \frac{\sqrt{2}}{24}.$$ #### For $$\int_0^{\pi/4} \sin\theta \, d\theta$$: $$\int_0^{\pi/4} \sin\theta \, d\theta = \left[-\cos\theta\right]_0^{\pi/4} = -\cos\left(\frac{\pi}{4}\right) + \cos(0) = -\frac{\sqrt{2}}{2} + 1.$$ ### Step 7: Combine the results Substituting back: - First term: $$\frac{12\sqrt{12}}{5} \cdot \frac{\sqrt{2}}{24} = \frac{\sqrt{12} \cdot \sqrt{2}}{10} = \frac{\sqrt{24}}{10} = \frac{2\sqrt{6}}{10} = \frac{\sqrt{6}}{5}.$$ - Second term: $$12\sqrt{12} \cdot \left(1 - \frac{\sqrt{2}}{2}\right) = 12\sqrt{12} - 6\sqrt{24}.$$ Thus, the value of the integral is: $$\frac{\sqrt{6}}{5} + 12\sqrt{12} - 6\sqrt{24}.$$Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Polar Coordinates
Multivariable Calculus
Integration
Formulas
x = r cos(θ), y = r sin(θ), dx dy = r dr dθ
Integral bounds for polar coordinates: r and θ
Trigonometric Substitution for Integration
Theorems
Change of Variables Theorem
Trigonometric Identities
Suitable Grade Level
Undergraduate Calculus (Grades 11-12 or College)
Related Recommendation
Double Integral of x^2 y^2 over a Circular Region Using Polar Coordinates
Evaluate Integral from 0 to 4 with Change of Variables and Substitution
Evaluate the Double Integral \( \int_0^2 \int_0^{\sqrt{x}} x^3 y \, dy \, dx \)
Evaluate Double Integral Using Polar Coordinates
Solve Double Integral by Changing to Polar Coordinates