Math Problem Statement

Evaluate the integral \( \int \frac{x^3}{x^4 - 5} \, dx \).

Solution

The integral to evaluate is:

x3x45dx\int \frac{x^3}{x^4 - 5} \, dx

Solution:

  1. Substitution: Let u=x45u = x^4 - 5. Then, du=4x3dxdu = 4x^3 \, dx.

  2. Rewrite x3dxx^3 \, dx in terms of uu: x3dx=14dux^3 \, dx = \frac{1}{4} du

  3. Replace the integral in terms of uu: x3x45dx=14duu\int \frac{x^3}{x^4 - 5} \, dx = \int \frac{\frac{1}{4} du}{u}

  4. Simplify: 141udu\frac{1}{4} \int \frac{1}{u} \, du

  5. Solve the integral: 14lnu+C\frac{1}{4} \ln|u| + C

  6. Substitute back u=x45u = x^4 - 5: 14lnx45+C\frac{1}{4} \ln|x^4 - 5| + C

Final Answer:

x3x45dx=14lnx45+C\int \frac{x^3}{x^4 - 5} \, dx = \frac{1}{4} \ln|x^4 - 5| + C

Let me know if you need further details or explanations.


Questions for Exploration:

  1. What happens if the denominator is x4+5x^4 + 5 instead of x45x^4 - 5?
  2. How can this substitution method be applied to trigonometric integrals?
  3. What is the role of the absolute value in logarithmic solutions for integrals?
  4. Can partial fraction decomposition be used for similar types of problems?
  5. How does the substitution method change for definite integrals?

Tip:

Always check the domain of your substitution and logarithmic solutions to ensure they align with the original integral.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration by Substitution

Formulas

Substitution Method: Let \( u = g(x) \), then \( \frac{du}{dx} = g'(x) \).
Logarithmic Integration: \( \int \frac{1}{x} \, dx = \ln|x| + C \).

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate Level (Calculus I)