Math Problem Statement

λ * integrate e ^ (x(t - λ)) dx from 0 to ∞

Solution

To evaluate the integral

λ0ex(tλ)dx,\lambda \int_{0}^{\infty} e^{x(t - \lambda)} \, dx,

we will proceed step-by-step.


Step 1: Interpret the Integral

The integral is dependent on the variables λ\lambda and tt. We assume λ>0\lambda > 0 and tλ0t - \lambda \neq 0 to ensure convergence.


Step 2: Solve the Exponential Integral

The integral is of the form:

0ex(tλ)dx.\int_{0}^{\infty} e^{x(t - \lambda)} \, dx.

  • Let A=tλA = t - \lambda.
  • Rewrite the integral:

0exAdx.\int_{0}^{\infty} e^{xA} \, dx.

This converges only when A<0A < 0, i.e., tλ<0t - \lambda < 0 or t<λt < \lambda. When A<0A < 0, we can compute the integral as:

0exAdx=1A=1λt.\int_{0}^{\infty} e^{xA} \, dx = \frac{1}{-A} = \frac{1}{\lambda - t}.


Step 3: Multiply by λ\lambda

Including the prefactor λ\lambda, the result becomes:

λ0ex(tλ)dx=λλt,\lambda \int_{0}^{\infty} e^{x(t - \lambda)} \, dx = \frac{\lambda}{\lambda - t},

valid for λ>t\lambda > t.


Final Answer:

λ0ex(tλ)dx=λλt,for λ>t.\boxed{\lambda \int_{0}^{\infty} e^{x(t - \lambda)} \, dx = \frac{\lambda}{\lambda - t}, \quad \text{for } \lambda > t.}


Would you like a detailed explanation of each step or further exploration of related topics?

Follow-up Questions:

  1. What is the physical interpretation of this integral in an applied context?
  2. How does the result change if t=λt = \lambda?
  3. Can you compute the same integral over a finite interval, say, from 0 to aa?
  4. What happens to the solution when λ\lambda approaches tt from above?
  5. Could this integral be evaluated using Laplace transforms?

Tip:

When dealing with exponential integrals, always verify convergence criteria before attempting to compute the integral.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Exponential Functions
Integration

Formulas

∫ e^(kx) dx = (1/k) * e^(kx) + C for k ≠ 0
Convergence condition for improper integrals

Theorems

Fundamental Theorem of Calculus
Convergence of Improper Integrals

Suitable Grade Level

Undergraduate Mathematics or Advanced High School