Math Problem Statement

. Evaluate ∫ 𝑡 ∞ 0 𝑒 –3t sin 2𝑡 𝑑�

Solution

To evaluate the integral

0e3tsin(2t)dt,\int_0^{\infty} e^{-3t} \sin(2t) \, dt,

we can use the formula for the Laplace transform of eatsin(bt)e^{at} \sin(bt). The general formula for the integral

0eptsin(qt)dt\int_0^{\infty} e^{-pt} \sin(qt) \, dt

is given by:

qp2+q2\frac{q}{p^2 + q^2}

where p>0p > 0.

In this case:

  • p=3p = 3
  • q=2q = 2

Substitute these values into the formula:

0e3tsin(2t)dt=232+22=29+4=213\int_0^{\infty} e^{-3t} \sin(2t) \, dt = \frac{2}{3^2 + 2^2} = \frac{2}{9 + 4} = \frac{2}{13}

So, the value of the integral is:

213\frac{2}{13}

Would you like a detailed step-by-step explanation or have any questions?


Here are 5 related questions to practice:

  1. Evaluate 0e2tcos(3t)dt\int_0^{\infty} e^{-2t} \cos(3t) \, dt.
  2. Find the Laplace transform of e3tcos(4t)e^{-3t} \cos(4t).
  3. Determine the integral 0etsin(5t)dt\int_0^{\infty} e^{-t} \sin(5t) \, dt.
  4. Calculate 0e4tsin(2t)dt\int_0^{\infty} e^{-4t} \sin(2t) \, dt.
  5. What is the value of 0e2tsin(t)dt\int_0^{\infty} e^{-2t} \sin(t) \, dt?

Tip: Understanding the Laplace transform formulas can greatly simplify the evaluation of many improper integrals involving exponentials and trigonometric functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Laplace Transform
Improper Integrals
Trigonometric Functions

Formulas

∫₀^∞ e^(-pt) sin(qt) dt = q / (p^2 + q^2)

Theorems

Laplace Transform of Exponentially Decaying Sinusoidal Functions

Suitable Grade Level

Undergraduate - Calculus II