Math Problem Statement

Do questions 1,3,7,and 9 and show the work please

Do questions 1, 3, 7, and 9 and show the work please

Solution

Let's go through questions 1, 3, 7, and 9 step-by-step, determining if each improper integral converges or diverges, and calculating the value if it converges.

1. 31x2dx\int_{3}^{\infty} \frac{1}{x^2} \, dx

  1. Set up the integral as a limit: 31x2dx=limb3b1x2dx\int_{3}^{\infty} \frac{1}{x^2} \, dx = \lim_{b \to \infty} \int_{3}^{b} \frac{1}{x^2} \, dx

  2. Evaluate the integral: 1x2dx=1x\int \frac{1}{x^2} \, dx = -\frac{1}{x} So, 3b1x2dx=[1x]3b=1b+13\int_{3}^{b} \frac{1}{x^2} \, dx = \left[ -\frac{1}{x} \right]_{3}^{b} = -\frac{1}{b} + \frac{1}{3}

  3. Take the limit as bb \to \infty: limb(1b+13)=0+13=13\lim_{b \to \infty} \left( -\frac{1}{b} + \frac{1}{3} \right) = 0 + \frac{1}{3} = \frac{1}{3}

Conclusion: The integral converges, and the value is 13\frac{1}{3}.


3. 42xdx\int_{4}^{\infty} \frac{2}{\sqrt{x}} \, dx

  1. Set up the integral as a limit: 42xdx=limb4b2xdx\int_{4}^{\infty} \frac{2}{\sqrt{x}} \, dx = \lim_{b \to \infty} \int_{4}^{b} \frac{2}{\sqrt{x}} \, dx

  2. Rewrite and evaluate the integral: 2xdx=2x12dx=4x\int \frac{2}{\sqrt{x}} \, dx = \int 2x^{-\frac{1}{2}} \, dx = 4 \sqrt{x} So, 4b2xdx=[4x]4b=4b44\int_{4}^{b} \frac{2}{\sqrt{x}} \, dx = \left[ 4 \sqrt{x} \right]_{4}^{b} = 4 \sqrt{b} - 4 \sqrt{4}

  3. Take the limit as bb \to \infty: limb(4b42)=limb(4b8)\lim_{b \to \infty} \left( 4 \sqrt{b} - 4 \cdot 2 \right) = \lim_{b \to \infty} \left( 4 \sqrt{b} - 8 \right) Since 4b4 \sqrt{b} diverges as bb \to \infty, the integral diverges.

Conclusion: The integral diverges.


7. 11x1.0001dx\int_{1}^{\infty} \frac{1}{x^{1.0001}} \, dx

  1. Set up the integral as a limit: 11x1.0001dx=limb1bx1.0001dx\int_{1}^{\infty} \frac{1}{x^{1.0001}} \, dx = \lim_{b \to \infty} \int_{1}^{b} x^{-1.0001} \, dx

  2. Evaluate the integral: x1.0001dx=x0.00010.0001=x0.00010.0001\int x^{-1.0001} \, dx = \frac{x^{-0.0001}}{-0.0001} = -\frac{x^{-0.0001}}{0.0001} So, 1bx1.0001dx=[x0.00010.0001]1b=b0.00010.0001+10.0001\int_{1}^{b} x^{-1.0001} \, dx = \left[ -\frac{x^{-0.0001}}{0.0001} \right]_{1}^{b} = -\frac{b^{-0.0001}}{0.0001} + \frac{1}{0.0001}

  3. Take the limit as bb \to \infty: limb(b0.00010.0001+10.0001)=0+10.0001=10000\lim_{b \to \infty} \left( -\frac{b^{-0.0001}}{0.0001} + \frac{1}{0.0001} \right) = 0 + \frac{1}{0.0001} = 10000

Conclusion: The integral converges, and the value is 1000010000.


9. 102x2dx\int_{-10}^{-2} x^{-2} \, dx

  1. Set up the integral as a limit (since x=2x = -2 is a discontinuity): 102x2dx=lima210ax2dx\int_{-10}^{-2} x^{-2} \, dx = \lim_{a \to -2^{-}} \int_{-10}^{a} x^{-2} \, dx

  2. Evaluate the integral: x2dx=1x\int x^{-2} \, dx = -\frac{1}{x} So, 10ax2dx=[1x]10a=1a+110\int_{-10}^{a} x^{-2} \, dx = \left[ -\frac{1}{x} \right]_{-10}^{a} = -\frac{1}{a} + \frac{1}{-10}

  3. Take the limit as a2a \to -2^{-}: [ \lim_{a \to -2^{-}} \left( -\frac{1}{a} + \frac{1}{-10} \right) = \lim_{a \to -2^{-}} \left( -\frac{1}{a} - \frac{1}{10} \right) = \frac{1}{2} - \frac{1}{10} = \frac{5}{10} - \frac{1

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Improper Integrals
Limits

Formulas

Integral of x^n: ∫ x^n dx = (x^(n+1)) / (n+1) + C, for n ≠ -1
Improper integral convergence: ∫ f(x) dx from a to ∞ converges if lim(b→∞) ∫ from a to b f(x) dx is finite

Theorems

Convergence of Improper Integrals
Limit Properties

Suitable Grade Level

College Level