Math Problem Statement

Find the value of (2 * tan 30°) / (1 + tan² 30°).

Solution

The expression you provided is:

2tan301+tan230\frac{2 \tan 30^\circ}{1 + \tan^2 30^\circ}

Let's calculate this step-by-step.

Step 1: Find tan30\tan 30^\circ

tan30=13\tan 30^\circ = \frac{1}{\sqrt{3}}

Step 2: Substitute tan30\tan 30^\circ into the expression

2131+(13)2\frac{2 \cdot \frac{1}{\sqrt{3}}}{1 + \left( \frac{1}{\sqrt{3}} \right)^2}

Step 3: Simplify the denominator

1+(13)2=1+13=431 + \left( \frac{1}{\sqrt{3}} \right)^2 = 1 + \frac{1}{3} = \frac{4}{3}

Step 4: Substitute back into the expression

2343=2334=643=323\frac{\frac{2}{\sqrt{3}}}{\frac{4}{3}} = \frac{2}{\sqrt{3}} \cdot \frac{3}{4} = \frac{6}{4\sqrt{3}} = \frac{3}{2\sqrt{3}}

Step 5: Rationalize the denominator

32333=3323=32\frac{3}{2\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{3\sqrt{3}}{2 \cdot 3} = \frac{\sqrt{3}}{2}

Final Answer

2tan301+tan230=32\frac{2 \tan 30^\circ}{1 + \tan^2 30^\circ} = \frac{\sqrt{3}}{2}

Would you like to explore this further or ask any questions? Here are some related questions:

  1. How can you find the values of other trigonometric functions at different angles?
  2. What are the properties of trigonometric identities used here?
  3. How do you rationalize a denominator in general?
  4. Can this formula be generalized for other angles?
  5. What are some practical applications of trigonometric ratios?

Tip: Understanding the fundamental trigonometric values like tan30\tan 30^\circ, sin45\sin 45^\circ, etc., will make solving these types of problems much easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Rationalization
Simplifying Expressions

Formulas

tan(30°) = 1/√3
Trig Identity: (2 * tan A) / (1 + tan² A)

Theorems

Trigonometric Ratio
Rationalization of Denominators

Suitable Grade Level

Grades 10-12