Math Problem Statement

Evaluate the integral \( \int_1^2 \frac{1}{(3 - 5x)^2} \, dx \).

Solution

To solve the integral

121(35x)2dx\int_1^2 \frac{1}{(3 - 5x)^2} \, dx

we can proceed with a substitution method. Here are the steps:

Step 1: Set up a substitution

Let u=35xu = 3 - 5x Then, dudx=5dx=15du.\frac{du}{dx} = -5 \Rightarrow dx = -\frac{1}{5} \, du.

Step 2: Adjust the limits of integration

When x=1x = 1: u=351=2.u = 3 - 5 \cdot 1 = -2. When x=2x = 2: u=352=7.u = 3 - 5 \cdot 2 = -7.

So the integral becomes 271u2(15)du.\int_{-2}^{-7} \frac{1}{u^2} \cdot \left(-\frac{1}{5}\right) \, du.

This simplifies to 15271u2du.-\frac{1}{5} \int_{-2}^{-7} \frac{1}{u^2} \, du.

Step 3: Simplify the integral

Rewrite the integral in terms of uu: 1527u2du.-\frac{1}{5} \int_{-2}^{-7} u^{-2} \, du.

Step 4: Integrate u2u^{-2}

The antiderivative of u2u^{-2} is u2du=1u.\int u^{-2} \, du = -\frac{1}{u}.

Thus, 1527u2du=15[1u]27.-\frac{1}{5} \int_{-2}^{-7} u^{-2} \, du = -\frac{1}{5} \left[-\frac{1}{u}\right]_{-2}^{-7}.

Step 5: Evaluate the definite integral

Now substitute the limits: 15[17+12]=15(1712).-\frac{1}{5} \left[-\frac{1}{-7} + \frac{1}{-2}\right] = -\frac{1}{5} \left(\frac{1}{7} - \frac{1}{2}\right).

Step 6: Simplify the result

Combine the terms inside the parentheses: 15(1712)=15(2714)=15514=114.-\frac{1}{5} \left(\frac{1}{7} - \frac{1}{2}\right) = -\frac{1}{5} \left(\frac{2 - 7}{14}\right) = -\frac{1}{5} \cdot \frac{-5}{14} = \frac{1}{14}.

Final Answer

121(35x)2dx=114.\int_1^2 \frac{1}{(3 - 5x)^2} \, dx = \frac{1}{14}.

Would you like more details or have any questions on any step?


Here are 5 related questions for practice:

  1. How would the answer change if the limits of integration were from 0 to 1 instead?
  2. What if the integrand was 1(3+5x)2\frac{1}{(3 + 5x)^2} instead of 1(35x)2\frac{1}{(3 - 5x)^2}?
  3. How can we solve the integral 1(ax+b)2dx\int \frac{1}{(ax + b)^2} \, dx for general constants aa and bb?
  4. What happens if the power in the denominator is 33 instead of 22, i.e., 1(35x)3\frac{1}{(3 - 5x)^3}?
  5. How would we approach the integral 12135xdx\int_1^2 \frac{1}{3 - 5x} \, dx without the square?

Tip: Always double-check substitution steps, especially when changing limits of integration.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Definite Integral
Substitution Method

Formulas

Integral of \( \int \frac{1}{u^2} \, du = -\frac{1}{u} \)
Substitution rule for integration \( u = g(x) \)

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate Calculus or Advanced High School Calculus