Math Problem Statement
A B C D E F [Graphs generated by this script: setBorder(60,30,60,30);initPicture(-10,10,-10,10); fontsize=14;fontstyle='none';marker=null;line([10,0],[-10,1.2246467991474E-15]);line([10,0],[-5,-8.6602540378444]);line([5,8.6602540378444],[-5,8.6602540378444]);line([5,8.6602540378444],[-10,1.2246467991474E-15]);line([5,8.6602540378444],[-5,-8.6602540378444]);line([-5,8.6602540378444],[-10,1.2246467991474E-15]);line([-5,8.6602540378444],[-5,-8.6602540378444]);line([-5,8.6602540378444],[5,-8.6602540378444]);line([-10,1.2246467991474E-15],[-5,-8.6602540378444]);fontbackground='white';fontfill='blue';text([10,0],'A','belowright');dot([10,0]);fontfill='blue';text([5,8.6602540378444],'B','aboveright');dot([5,8.6602540378444]);fontfill='blue';text([-5,8.6602540378444],'C','aboveleft');dot([-5,8.6602540378444]);fontfill='blue';text([-10,1.2246467991474E-15],'D','aboveleft');dot([-10,1.2246467991474E-15]);fontfill='blue';text([-5,-8.6602540378444],'E','belowleft');dot([-5,-8.6602540378444]);fontfill='blue';text([5,-8.6602540378444],'F','belowright');dot([5,-8.6602540378444]);]
Find an Euler path for the graph. Enter your response as a sequence of vertices in the order they are visited, for example, ABCDEA
Solution
To find an Euler path in a graph, we need a path that visits every edge exactly once. This is possible if and only if the graph has exactly 0 or 2 vertices of odd degree. First, let us analyze the graph:
Step 1: Degree of vertices
- A: Connected to B, D, and F → degree 3 (odd).
- B: Connected to A, C, and F → degree 3 (odd).
- C: Connected to B, D, and E → degree 3 (odd).
- D: Connected to A, C, and E → degree 3 (odd).
- E: Connected to C, D, and F → degree 3 (odd).
- F: Connected to A, B, and E → degree 3 (odd).
All vertices have an odd degree, meaning no Euler path exists because more than 2 vertices have an odd degree.
Conclusion
It is not possible to find an Euler path for this graph.
Would you like help analyzing a different property of the graph or visualizing it?
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Graph Theory
Eulerian Paths
Formulas
Euler Path Condition: A graph has an Euler path if and only if it has exactly 0 or 2 vertices of odd degree.
Theorems
Euler's Theorem
Suitable Grade Level
Grades 10-12