Math Problem Statement

Estimate the integral \(\int_0^2 e^{-4x^2} \, dx\) using a Taylor polynomial of degree 4 centered at 0.

Solution

The problem requires estimating the integral 02e4x2dx\int_0^2 e^{-4x^2} \, dx using a Taylor polynomial of degree 4 centered at 0. Here's how to approach this:


Step 1: Taylor Polynomial for exe^x

The Taylor series expansion of exe^x about x=0x = 0 is: ex=1+x+x22!+x33!+x44!+e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots

Since we need to approximate e4x2e^{-4x^2}, we substitute x=4x2x = -4x^2 into the series: e4x2=14x2+(4x2)22!(4x2)33!+(4x2)44!+e^{-4x^2} = 1 - 4x^2 + \frac{(-4x^2)^2}{2!} - \frac{(-4x^2)^3}{3!} + \frac{(-4x^2)^4}{4!} + \cdots

Simplify terms up to degree 4:

  • 11
  • 4x2-4x^2
  • (4x2)22!=16x42=8x4\frac{(-4x^2)^2}{2!} = \frac{16x^4}{2} = 8x^4

Thus, the degree 4 approximation is: T4(x)=14x2+8x4T_4(x) = 1 - 4x^2 + 8x^4


Step 2: Integral Approximation

Substitute T4(x)T_4(x) into the integral: 02e4x2dx02(14x2+8x4)dx\int_0^2 e^{-4x^2} \, dx \approx \int_0^2 \left(1 - 4x^2 + 8x^4\right) \, dx

Now, compute each term:

  1. 021dx=[x]02=2\int_0^2 1 \, dx = [x]_0^2 = 2
  2. 024x2dx=402x2dx=4[x33]02=483=323\int_0^2 -4x^2 \, dx = -4 \int_0^2 x^2 \, dx = -4 \cdot \left[\frac{x^3}{3}\right]_0^2 = -4 \cdot \frac{8}{3} = -\frac{32}{3}
  3. 028x4dx=802x4dx=8[x55]02=8325=2565\int_0^2 8x^4 \, dx = 8 \int_0^2 x^4 \, dx = 8 \cdot \left[\frac{x^5}{5}\right]_0^2 = 8 \cdot \frac{32}{5} = \frac{256}{5}

Combine terms: 02e4x2dx2323+2565\int_0^2 e^{-4x^2} \, dx \approx 2 - \frac{32}{3} + \frac{256}{5}


Step 3: Simplify Result

Find a common denominator (15):

  • 2=30152 = \frac{30}{15}
  • 323=16015-\frac{32}{3} = -\frac{160}{15}
  • 2565=76815\frac{256}{5} = \frac{768}{15}

Add these: 301516015+76815=63815\frac{30}{15} - \frac{160}{15} + \frac{768}{15} = \frac{638}{15}

Thus, the approximation is: 02e4x2dx63815\int_0^2 e^{-4x^2} \, dx \approx \frac{638}{15}


Would you like a detailed explanation of any specific step?

Related Questions:

  1. What is the general formula for Taylor expansions, and how do we apply them to composition of functions?
  2. Why do we truncate the Taylor series at degree 4 instead of including higher terms?
  3. How does the Taylor expansion help in approximating difficult integrals like this?
  4. What is the role of the even symmetry of e4x2e^{-4x^2} in this integral approximation?
  5. How would increasing the Taylor polynomial degree affect the accuracy of the approximation?

Tip:

When approximating integrals using Taylor polynomials, always ensure you compute up to the required degree accurately and note which terms significantly contribute to the integral value.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Taylor Series Expansion
Polynomial Approximation
Definite Integration
Composition of Functions

Formulas

Taylor series for \(e^x\): \(e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\)
Integral of a polynomial: \(\int x^n dx = \frac{x^{n+1}}{n+1}\)

Theorems

Taylor Expansion Theorem

Suitable Grade Level

College Calculus