Math Problem Statement

  1. Tentukanlah nilai error dan nilai mutlak eror dari data di bawah ini, serta gambarkan error garis regresinya? X Y Ŷ Error Nilai mutlak error 2 1 3 …… …… 4 4 4 …… …… 7 5 6 …… …… 9 7 10 …… …… 10 11 8 …… …… 13 12 9 …… ……
  2. Data X Y 1 2 60 2 4 80 3 6 100 12 240 Berikut ini merupakan tabel data nilai ulangan ( Y) dan masa lama belajar siswa (X). Tentukan dan hitunglah besaran nilai persamaan regresi dugaan!
  3. Tentukanlah nilai koefficient dari tabel di bawah ini serta signifikansinya? selanjutnya tentukan persamaan regresi dugaan dari tabel berikut.! Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig B Std.Error Beta 1 (Constant) 3.919 2.418 1.621 0.149 X1 2.491 0.703 1.024 3.544 0.009 X2 - .466 1.016 -0.133 -.459 0.660

Solution

Let's break down your queries step by step.

1. Error Calculation and Regression Line

Given the dataLet's break down your queries step by step.

1. Error Calculation and Regression Line

Given the

XYŶ
213
444
756
9710
10118
13129

Error is calculated as Error=YY^\text{Error} = Y - \hat{Y}.

Absolute Error is calculated as Error|\text{Error}|.

Now, let's compute these values:

XYŶError (Y - Ŷ)Absolute Error
213-22
44400
756-11
9710-33
1011833
1312933

2. Regression Equation

For the second dataset:

XY
12
24
36
12240

You can calculate the regression coefficients using the formulas for linear regression. The formula for the regression line is Y=a+bXY = a + bX.

Let's calculate bb (slope) and aa (intercept):

  1. Calculate the means of X and Y.
  2. Use the formula for slope b=N(XY)(X)(Y)N(X2)(X)2b = \frac{N(\sum XY) - (\sum X)(\sum Y)}{N(\sum X^2) - (\sum X)^2}.
  3. Calculate aa using a=YˉbXˉa = \bar{Y} - b\bar{X}.

The calculations will yield the regression equation.

3. Coefficients and Significance

For the regression table you provided:

Coefficientsa
ModelUnstandardized Coefficients
B
(Constant)3.919
X12.491
X2-0.466
  • The significance of coefficients can be checked using the p-values (Sig). Typically, a p-value < 0.05 indicates significance.
  • The regression equation can be written as: Y=3.919+2.491X10.466X2Y = 3.919 + 2.491X1 - 0.466X2

Summary of Results:

  1. Error and Absolute Error:

    • Error calculated for each data point.
    • Absolute error calculated as well.
  2. Regression Equation:

    • Find slope and intercept for the second dataset.
  3. Coefficients and Significance:

    • Constant and coefficients from the regression output.
    • Check significance using p-values.

If you need detailed calculations or explanations for any step, feel free to ask!

Questions for Further Exploration:

  1. How do you interpret the slope and intercept of a regression line?
  2. What methods can be used to evaluate the goodness of fit for a regression model?
  3. How can multicollinearity affect the interpretation of regression coefficients?
  4. What are potential reasons for a high error in regression predictions?
  5. How can you visualize the regression line and errors graphically?

Tip:

Always check for outliers in your data, as they can significantly affect regression results and errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Regression Analysis
Error Calculation

Formulas

Error = Y - Ŷ
Absolute Error = |Error|
Y = a + bX (regression equation)
b = (N(ΣXY) - (ΣX)(ΣY)) / (N(ΣX²) - (ΣX)²)
a = Ȳ - bX̄

Theorems

Regression Analysis Theorem
Error Measurement Theorem

Suitable Grade Level

Grades 10-12