Math Problem Statement
- Tentukanlah nilai error dan nilai mutlak eror dari data di bawah ini, serta gambarkan error garis regresinya? X Y Ŷ Error Nilai mutlak error 2 1 3 …… …… 4 4 4 …… …… 7 5 6 …… …… 9 7 10 …… …… 10 11 8 …… …… 13 12 9 …… ……
- Data X Y 1 2 60 2 4 80 3 6 100 12 240 Berikut ini merupakan tabel data nilai ulangan ( Y) dan masa lama belajar siswa (X). Tentukan dan hitunglah besaran nilai persamaan regresi dugaan!
- Tentukanlah nilai koefficient dari tabel di bawah ini serta signifikansinya? selanjutnya tentukan persamaan regresi dugaan dari tabel berikut.! Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig B Std.Error Beta 1 (Constant) 3.919 2.418 1.621 0.149 X1 2.491 0.703 1.024 3.544 0.009 X2 - .466 1.016 -0.133 -.459 0.660
Solution
Let's break down your queries step by step.
1. Error Calculation and Regression Line
Given the dataLet's break down your queries step by step.
1. Error Calculation and Regression Line
Given the
X | Y | Ŷ |
---|---|---|
2 | 1 | 3 |
4 | 4 | 4 |
7 | 5 | 6 |
9 | 7 | 10 |
10 | 11 | 8 |
13 | 12 | 9 |
Error is calculated as .
Absolute Error is calculated as .
Now, let's compute these values:
X | Y | Ŷ | Error (Y - Ŷ) | Absolute Error |
---|---|---|---|---|
2 | 1 | 3 | -2 | 2 |
4 | 4 | 4 | 0 | 0 |
7 | 5 | 6 | -1 | 1 |
9 | 7 | 10 | -3 | 3 |
10 | 11 | 8 | 3 | 3 |
13 | 12 | 9 | 3 | 3 |
2. Regression Equation
For the second dataset:
X | Y |
---|---|
1 | 2 |
2 | 4 |
3 | 6 |
12 | 240 |
You can calculate the regression coefficients using the formulas for linear regression. The formula for the regression line is .
Let's calculate (slope) and (intercept):
- Calculate the means of X and Y.
- Use the formula for slope .
- Calculate using .
The calculations will yield the regression equation.
3. Coefficients and Significance
For the regression table you provided:
Coefficientsa | |
---|---|
Model | Unstandardized Coefficients |
B | |
(Constant) | 3.919 |
X1 | 2.491 |
X2 | -0.466 |
- The significance of coefficients can be checked using the p-values (Sig). Typically, a p-value < 0.05 indicates significance.
- The regression equation can be written as:
Summary of Results:
-
Error and Absolute Error:
- Error calculated for each data point.
- Absolute error calculated as well.
-
Regression Equation:
- Find slope and intercept for the second dataset.
-
Coefficients and Significance:
- Constant and coefficients from the regression output.
- Check significance using p-values.
If you need detailed calculations or explanations for any step, feel free to ask!
Questions for Further Exploration:
- How do you interpret the slope and intercept of a regression line?
- What methods can be used to evaluate the goodness of fit for a regression model?
- How can multicollinearity affect the interpretation of regression coefficients?
- What are potential reasons for a high error in regression predictions?
- How can you visualize the regression line and errors graphically?
Tip:
Always check for outliers in your data, as they can significantly affect regression results and errors.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Statistics
Regression Analysis
Error Calculation
Formulas
Error = Y - Ŷ
Absolute Error = |Error|
Y = a + bX (regression equation)
b = (N(ΣXY) - (ΣX)(ΣY)) / (N(ΣX²) - (ΣX)²)
a = Ȳ - bX̄
Theorems
Regression Analysis Theorem
Error Measurement Theorem
Suitable Grade Level
Grades 10-12
Related Recommendation
Compute the Error Made When Using an Estimate
Standard Error Calculation in Linear Regression: College and High School GPAs
Calculating Squared Errors for Linear Regression Y = 2 + 3X
Calculate Least-Squares Regression and Standard Error of Estimate
Compute Standard Error of Estimate and MAD for a Quadratic Regression Model