Math Problem Statement

Укажите все верные утверждения: 1. Пусть X — множество всех натуральных чисел, m, n ∈ X, тогда отношение m ~ n тогда и только тогда, когда m и n взаимно просты. Это отношение является отношением эквивалентности. 2. Отношение сравнимости по модулю 2 разбивает множество Z на три класса эквивалентности. 3. Пусть X — множество всех треугольников, m, n ∈ X, тогда отношение m ~ n тогда и только тогда, когда m и n остроугольные. Это отношение является отношением эквивалентности. 4. Если на множестве X задано отношение эквивалентности, то это порождает разбиение этого множества на классы эквивалентности.

Solution

The task asks to indicate all the correct statements related to equivalence relations. Let’s go through each statement one by one:

  1. Statement 1:
    Let XX be the set of all natural numbers, and mnm \sim n if and only if mm and nn are coprime. This relation is an equivalence relation.
    This statement is incorrect. The property "coprime" means that two numbers share no common divisors other than 1, but this does not satisfy the transitivity condition required for an equivalence relation. Transitivity would mean that if mnm \sim n and npn \sim p, then mpm \sim p, which is not necessarily true for coprime numbers.

  2. Statement 2:
    The relation of congruence modulo 2 divides the set Z\mathbb{Z} into three equivalence classes.
    This statement is incorrect. Congruence modulo 2 divides the set of integers Z\mathbb{Z} into two equivalence classes: even numbers and odd numbers.

  3. Statement 3:
    Let XX be the set of all triangles, and mnm \sim n if and only if both mm and nn are acute triangles. This relation is an equivalence relation.
    This statement is correct. The relation "both triangles are acute" satisfies the conditions of an equivalence relation: reflexivity, symmetry, and transitivity.

  4. Statement 4:
    If a set XX has an equivalence relation, it induces a partition of this set into equivalence classes.
    This statement is correct. By definition, an equivalence relation on a set induces a partition of the set into disjoint equivalence classes, where elements in the same class are equivalent to each other.

Conclusion:

  • Correct statements: 3 and 4.

Let me know if you need further clarification or details.


Here are 5 related questions for further exploration:

  1. What are the key properties of an equivalence relation?
  2. How does the concept of partitioning a set relate to equivalence relations?
  3. Can you provide an example of a relation that is symmetric and reflexive but not transitive?
  4. How does modular arithmetic create equivalence classes in number theory?
  5. What are the implications of a relation being transitive but not reflexive?

Tip: Always check for the three properties—reflexivity, symmetry, and transitivity—when determining if a relation is an equivalence relation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Equivalence Relations
Modular Arithmetic
Number Theory
Geometry

Formulas

-

Theorems

Properties of Equivalence Relations
Modular Arithmetic in Z
Triangle Classification

Suitable Grade Level

Grades 10-12