Math Problem Statement

Given the data,

N2(g)  +  O2(g)  -->  2 NO(g)                           ∆H° = 180.7 kJ

2 NO(g)  +  O2(g)  -->  2 NO2(g)                     ∆H° = -113.1 kJ

2 N2O(g)  -->  2 N2(g)  +  O2(g)                      ∆H° = -163.2 kJ

use Hess’s Law to calculate ∆H° for the following reaction.

N2O(g)  +  NO2(g)    3 NO(g)

Solution

To calculate the standard enthalpy change (∆H°) for the reaction

N2O(g)+NO2(g)3NO(g),\text{N}_2\text{O}(g) + \text{NO}_2(g) \rightarrow 3 \text{NO}(g),

we can use Hess's Law, which states that the total enthalpy change for a reaction is the sum of the enthalpy changes for the individual steps, regardless of the pathway taken.

Given Reactions:

  1. N2(g)+O2(g)2NO(g)\text{N}_2(g) + \text{O}_2(g) \rightarrow 2 \text{NO}(g) ΔH°=180.7kJ\Delta H° = 180.7 \, \text{kJ}
  2. 2NO(g)+O2(g)2NO2(g)2 \text{NO}(g) + \text{O}_2(g) \rightarrow 2 \text{NO}_2(g) ΔH°=113.1kJ\Delta H° = -113.1 \, \text{kJ}
  3. 2N2O(g)2N2(g)+O2(g)2 \text{N}_2\text{O}(g) \rightarrow 2 \text{N}_2(g) + \text{O}_2(g) ΔH°=163.2kJ\Delta H° = -163.2 \, \text{kJ}

Step 1: Rearranging Reactions

  1. To form N2O(g)\text{N}_2O(g), we reverse reaction 3:

    2N2(g)+O2(g)2N2O(g)ΔH°=+163.2kJ2 \text{N}_2(g) + \text{O}_2(g) \rightarrow 2 \text{N}_2\text{O}(g) \quad \Delta H° = +163.2 \, \text{kJ}

    Since we need only 1 mole of N2O\text{N}_2O, we divide the entire reaction by 2:

    N2(g)+12O2(g)N2O(g)ΔH°=163.22=81.6kJ\text{N}_2(g) + \frac{1}{2}\text{O}_2(g) \rightarrow \text{N}_2\text{O}(g) \quad \Delta H° = \frac{163.2}{2} = 81.6 \, \text{kJ}

  2. Use reaction 2 directly, but we need only 1 mole of NO2\text{NO}_2:

    NO2(g)NO(g)+12O2(g)ΔH°=113.12=56.55kJ\text{NO}_2(g) \rightarrow \text{NO}(g) + \frac{1}{2}\text{O}_2(g) \quad \Delta H° = \frac{-113.1}{2} = -56.55 \, \text{kJ}

  3. We will use reaction 1 directly for the production of 3 moles of NO\text{NO}:

    N2(g)+O2(g)2NO(g)ΔH°=180.7kJ\text{N}_2(g) + \text{O}_2(g) \rightarrow 2 \text{NO}(g) \quad \Delta H° = 180.7 \, \text{kJ}

    To form 3 moles of NO\text{NO}, we adjust:

    N2(g)+O2(g)3NO(g)ΔH°=180.72+180.7271.05kJ\text{N}_2(g) + \text{O}_2(g) \rightarrow 3 \text{NO}(g) \quad \Delta H° = \frac{180.7}{2} + 180.7 \approx 271.05 \, \text{kJ}

Step 2: Summing the Adjusted Reactions

Now, we combine these three reactions:

  1. From N2(g)+12O2(g)N2O(g)\text{N}_2(g) + \frac{1}{2}\text{O}_2(g) \rightarrow \text{N}_2\text{O}(g) ΔH°=81.6kJ\Delta H° = 81.6 \, \text{kJ}
  2. From NO2(g)NO(g)+12O2(g)\text{NO}_2(g) \rightarrow \text{NO}(g) + \frac{1}{2}\text{O}_2(g) ΔH°=56.55kJ\Delta H° = -56.55 \, \text{kJ}
  3. From N2(g)+O2(g)3NO(g)\text{N}_2(g) + \text{O}_2(g) \rightarrow 3 \text{NO}(g) ΔH°=271.05kJ\Delta H° = 271.05 \, \text{kJ}

Final Calculation:

Summing these enthalpies:

ΔH°=81.656.55+271.05=296.1kJ\Delta H° = 81.6 - 56.55 + 271.05 = 296.1 \, \text{kJ}

Thus, the enthalpy change for the reaction

N2O(g)+NO2(g)3NO(g)\text{N}_2\text{O}(g) + \text{NO}_2(g) \rightarrow 3 \text{NO}(g)

is

ΔH°=296.1kJ.\Delta H° = 296.1 \, \text{kJ}.

Summary

The calculated enthalpy change for the reaction is 296.1kJ296.1 \, \text{kJ}.

Do you want more details or have any questions? Here are some related questions:

  1. How does Hess's Law apply to other types of reactions?
  2. What are the limitations of Hess's Law?
  3. Can you explain the significance of the signs of ∆H° values?
  4. How can we determine if a reaction is exothermic or endothermic using enthalpy changes?
  5. What are some real-world applications of Hess's Law?

Tip: Always ensure the reactions are balanced before applying Hess’s Law to avoid errors in calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Thermodynamics
Enthalpy Calculations
Hess's Law

Formulas

∆H° = Σ(∆H° of products) - Σ(∆H° of reactants)

Theorems

Hess's Law

Suitable Grade Level

Grades 11-12