Math Problem Statement

SOLVE IT USIJG FUBINI N= AND BEFORE EXPALI FUBINI TI ME

SOLVE IT USIJG FUBINI N= AND BEFORE EXPALI FUBINI TI ME

Solution

To solve these integrals using Fubini's theorem, we decompose the double integrals into iterated integrals and evaluate them. Here's a quick explanation of Fubini's theorem before solving:


Fubini's Theorem

Fubini's theorem states that if a function f(x,y)f(x, y) is continuous over a rectangular region DD, the double integral can be computed as iterated integrals:

Df(x,y)dxdy=ab(cdf(x,y)dy)dx=cd(abf(x,y)dx)dy\iint_D f(x, y) \, dx\, dy = \int_a^b \left( \int_c^d f(x, y) \, dy \right) dx = \int_c^d \left( \int_a^b f(x, y) \, dx \right) dy

For non-rectangular regions, we use bounds determined by the region DD.


1. Problem 1

Dxy1+x2+y2dxdy,D={(x,y)R20x1,0y1x2+y2}.\iint_D \frac{xy}{1+x^2+y^2} \, dx\,dy, \quad D = \{(x, y) \in \mathbb{R}^2 \,|\, 0 \leq x \leq 1, 0 \leq y \leq 1 \leq x^2 + y^2 \}.

To solve:

  1. Bounds: x[0,1]x \in [0, 1], ( y \in [0, \sqrt{.

Then explain Use theintegartimport sympy as sp

Variables

x, y = sp.symbols('x y')

First integral

integrand1 = (x * y) / (1 + x2 + y2) region1_x = (0, 1) region1_y = (0, sp.sqrt(1 - x**2))

Solve the integral

inner_integral1 = sp.integrate(integrand1, (y, *region1_y)) result1 = sp.integrate(inner_integral1, (x, *region1_x))

Second integral

integrand2 = x * sp.cos(y) region2_y = (0, x**2) region2_x = (0, 2)

inner_integral2 = sp.integrate(integrand2, (y, *region2_y)) result2 = sp.integrate(inner_integral2, (x, *region2_x))

Third integral

integrand3 = x * y region3_y = (0, 2 - x) region3_x = (0, 2)

inner_integral3 = sp.integrate(integrand3, (y, *region3_y)) result3 = sp.integrate(inner_integral3, (x, *region3_x))

result1, result2, result3(1/4 - log(2)/4, 1/2 - cos(4)/2, 2/3)(1/4 - log(2)/4, 1/2 - cos(4)/2, 2/3)successHere are the solutions to the integrals using Fubini's theorem:

  1. Integral 1: Dxy1+x2+y2dxdy=14ln(2)4.\iint_D \frac{xy}{1+x^2+y^2} \, dx\, dy = \frac{1}{4} - \frac{\ln(2)}{4}.

  2. Integral 2: Dxcos(y)dxdy=12cos(4)2.\iint_D x \cos(y) \, dx\, dy = \frac{1}{2} - \frac{\cos(4)}{2}.

  3. Integral 3: Dxydxdy=23.\iint_D x y \, dx\, dy = \frac{2}{3}.

If you'd like detailed step-by-step solutions for any of these integrals, let me know!


Related Questions:

  1. How do you determine the bounds of integration from the region DD?
  2. Can Fubini's theorem be applied to non-rectangular regions?
  3. What happens if the integrand isn't continuous over DD?
  4. How would polar coordinates simplify the first integral?
  5. How do you interpret the results of these integrals geometrically?

Tip: Always visualize the integration domain DD to confirm the bounds are correct before solving!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Double Integration

Formulas

Iterated integrals for a function f(x, y) over a region D
\( \iint_D f(x, y) \, dx\, dy = \int_a^b \left( \int_c^d f(x, y) \, dy \right) dx = \int_c^d \left( \int_a^b f(x, y) \, dx \right) dy \)

Theorems

Fubini's Theorem

Suitable Grade Level

Undergraduate Mathematics