Math Problem Statement

b) ∫∫D x 2 √ x 2 +y 2 dxdy, unde D este domeniul mărginit de curbele x 2 +y 2 = 1 şi x 2 +y 2 = 4;

Solution

We are tasked with evaluating the double integral:

Dx2x2+y2dxdy\iint_D \frac{x^2}{\sqrt{x^2 + y^2}} \, dx \, dy

where DD is the region bounded by the circles x2+y2=1x^2 + y^2 = 1 and x2+y2=4x^2 + y^2 = 4.

Step 1: Change to polar coordinates

In polar coordinates: x=rcosθ,y=rsinθ,x2+y2=r2,dxdy=rdrdθx = r\cos\theta, \quad y = r\sin\theta, \quad x^2 + y^2 = r^2, \quad dx\,dy = r \, dr \, d\theta

The integral becomes: Dx2x2+y2dxdy=D(rcosθ)2r2rdrdθ\iint_D \frac{x^2}{\sqrt{x^2 + y^2}} \, dx \, dy = \iint_D \frac{(r\cos\theta)^2}{\sqrt{r^2}} \cdot r \, dr \, d\theta

Simplify: (rcosθ)2r2=r2cos2θr=rcos2θ\frac{(r\cos\theta)^2}{\sqrt{r^2}} = \frac{r^2\cos^2\theta}{r} = r\cos^2\theta

Thus, the integral in polar coordinates is: 02π12rcos2θrdrdθ=02π12r2cos2θdrdθ\int_0^{2\pi} \int_1^2 r \cos^2\theta \cdot r \, dr \, d\theta = \int_0^{2\pi} \int_1^2 r^2 \cos^2\theta \, dr \, d\theta

Step 2: Separate the integral

We separate the rr- and θ\theta-dependent parts: 02π12r2cos2θdrdθ=(02πcos2θdθ)(12r2dr)\int_0^{2\pi} \int_1^2 r^2 \cos^2\theta \, dr \, d\theta = \left( \int_0^{2\pi} \cos^2\theta \, d\theta \right) \cdot \left( \int_1^2 r^2 \, dr \right)

Part 1: Compute 02πcos2θdθ\int_0^{2\pi} \cos^2\theta \, d\theta

Using the trigonometric identity: cos2θ=1+cos(2θ)2\cos^2\theta = \frac{1 + \cos(2\theta)}{2} 02πcos2θdθ=02π1+cos(2θ)2dθ=1202π1dθ+1202πcos(2θ)dθ\int_0^{2\pi} \cos^2\theta \, d\theta = \int_0^{2\pi} \frac{1 + \cos(2\theta)}{2} \, d\theta = \frac{1}{2} \int_0^{2\pi} 1 \, d\theta + \frac{1}{2} \int_0^{2\pi} \cos(2\theta) \, d\theta

The first term is: 1202π1dθ=122π=π\frac{1}{2} \int_0^{2\pi} 1 \, d\theta = \frac{1}{2} \cdot 2\pi = \pi

The second term is zero because cos(2θ)\cos(2\theta) is periodic over [0,2π][0, 2\pi]: 02πcos(2θ)dθ=0\int_0^{2\pi} \cos(2\theta) \, d\theta = 0

Thus: 02πcos2θdθ=π\int_0^{2\pi} \cos^2\theta \, d\theta = \pi

Part 2: Compute 12r2dr\int_1^2 r^2 \, dr

12r2dr=[r33]12=233133=8313=73\int_1^2 r^2 \, dr = \left[\frac{r^3}{3}\right]_1^2 = \frac{2^3}{3} - \frac{1^3}{3} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}

Step 3: Combine the results

Dx2x2+y2dxdy=(π)(73)=7π3\iint_D \frac{x^2}{\sqrt{x^2 + y^2}} \, dx \, dy = \left(\pi\right) \cdot \left(\frac{7}{3}\right) = \frac{7\pi}{3}

Final Answer:

7π3\boxed{\frac{7\pi}{3}}

Would you like details on a specific step, or have any other questions?

Related Questions:

  1. How does the Jacobian factor affect integrals in polar coordinates?
  2. What is the role of symmetry in simplifying double integrals?
  3. Can this problem be approached using cylindrical coordinates?
  4. How would the integral change if the region were an ellipse instead of a circle?
  5. What is the physical significance of x2x2+y2\frac{x^2}{\sqrt{x^2 + y^2}} in a practical context?

Tip:

Always use symmetry to reduce computation in integrals over circular or elliptical regions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Double Integrals
Polar Coordinates
Trigonometric Identities

Formulas

x = r cos(θ), y = r sin(θ), x^2 + y^2 = r^2
dxdy = r dr dθ
cos^2(θ) = (1 + cos(2θ))/2

Theorems

Conversion of Cartesian to Polar Coordinates
Evaluation of Definite Integrals
Trigonometric Periodicity

Suitable Grade Level

Undergraduate (Calculus II or III)