Math Problem Statement

Let 𝐼=∫∫(𝑥2−𝑦2)𝑑𝑥𝑑𝑦 I

∫ ∫ D ( x 2 − y 2 ) d x d y , where ={(𝑥,𝑦):2≤𝑥𝑦≤3,0≤𝑥−𝑦≤4,𝑥≥0,𝑦≥0} D

{ ( x , y ) : 2 ≤ x y ≤ 3 , 0 ≤ x − y ≤ 4 , x ≥ 0 , y ≥ 0 } Show that the mapping 𝑢=𝑥𝑦 u

x y , 𝑣=𝑥−𝑦 v

x − y maps  D to the rectangle =[2,3]×[0,4] R

[ 2 , 3 ] × [ 0 , 4 ] .

(𝐚) ( a ) Compute ∂(𝑥,𝑦)/∂(𝑢,𝑣) ∂ ( x , y ) / ∂ ( u , v ) by first computing ∂(𝑢,𝑣)/∂(𝑥,𝑦) ∂ ( u , v ) / ∂ ( x , y ) .

(𝐛) ( b ) Use the Change of Variables Formula to show that 𝐼 I is equal to the integral of 𝑓(𝑢,𝑣)=𝑣 f ( u , v )

v over  R and evaluate.

Solution

We will address this problem in steps.


Step 1: Show that the mapping (u,v)(u, v) maps D\mathcal{D} to R=[2,3]×[0,4]\mathcal{R} = [2, 3] \times [0, 4]

The mapping is defined as: u=xy,v=xy.u = xy, \quad v = x - y.

Constraints:

  1. 2xy32 \leq xy \leq 3: This directly maps to 2u32 \leq u \leq 3.
  2. 0xy40 \leq x - y \leq 4: This directly maps to 0v40 \leq v \leq 4.
  3. x0,y0x \geq 0, \, y \geq 0: These ensure xx and yy remain in the first quadrant.

Thus, the region D\mathcal{D} defined by these constraints maps to the rectangle [2,3]×[0,4][2, 3] \times [0, 4] in the (u,v)(u, v)-plane.


Step 2: Compute (x,y)(u,v)\frac{\partial(x, y)}{\partial(u, v)} by first finding (u,v)(x,y)\frac{\partial(u, v)}{\partial(x, y)}

Compute (u,v)(x,y)\frac{\partial(u, v)}{\partial(x, y)}

We have: u=xy,v=xy.u = xy, \quad v = x - y.

Take partial derivatives: ux=y,uy=x,\frac{\partial u}{\partial x} = y, \quad \frac{\partial u}{\partial y} = x, vx=1,vy=1.\frac{\partial v}{\partial x} = 1, \quad \frac{\partial v}{\partial y} = -1.

Thus, the Jacobian determinant is:

\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} y & x \\ 1 & -1 \end{vmatrix}.$$ Compute the determinant: $$\frac{\partial(u, v)}{\partial(x, y)} = y(-1) - x(1) = -y - x = -(x + y).$$ #### Find $$\frac{\partial(x, y)}{\partial(u, v)}$$ The Jacobian $$\frac{\partial(x, y)}{\partial(u, v)}$$ is the reciprocal of $$\frac{\partial(u, v)}{\partial(x, y)}$$: $$\frac{\partial(x, y)}{\partial(u, v)} = \frac{1}{-(x + y)}.$$ --- ### Step 3: Express $$(x, y)$$ in terms of $$(u, v)$$ From the definitions: $$x = \frac{u}{v + 1}, \quad y = \frac{uv}{v + 1}.$$ Substitute these into $$- (x + y)$$: $$x + y = \frac{u}{v + 1} + \frac{uv}{v + 1} = \frac{u(1 + v)}{v + 1} = u.$$ Thus: $$\frac{\partial(x, y)}{\partial(u, v)} = \frac{1}{-u}.$$ --- ### Step 4: Use the Change of Variables Formula The integral becomes: $$I = \int \int_{\mathcal{D}} (x^2 - y^2) \, dx \, dy.$$ Under the change of variables $$(u, v)$$, the integral transforms as: $$I = \int \int_{\mathcal{R}} f(u, v) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \, du \, dv,$$ where $$f(u, v) = v$$. Substitute $$\left| \frac{\partial(x, y)}{\partial(u, v)} \right| = \frac{1}{u}$$: $$I = \int_2^3 \int_0^4 v \cdot \frac{1}{u} \, dv \, du.$$ --- ### Step 5: Evaluate the Integral Split the integral: $$I = \int_2^3 \frac{1}{u} \left( \int_0^4 v \, dv \right) du.$$ Evaluate the inner integral: $$\int_0^4 v \, dv = \left[ \frac{v^2}{2} \right]_0^4 = \frac{4^2}{2} - \frac{0^2}{2} = 8.$$ Thus: $$I = \int_2^3 \frac{8}{u} \, du.$$ Evaluate the remaining integral: $$\int_2^3 \frac{8}{u} \, du = 8 \int_2^3 \frac{1}{u} \, du = 8 \ln u \Big|_2^3 = 8 (\ln 3 - \ln 2) = 8 \ln\left(\frac{3}{2}\right).$$ --- ### Final Answer: $$I = 8 \ln\left(\frac{3}{2}\right).$$ --- Would you like more details or assistance with related topics? --- ### Related Questions: 1. What happens if we modify the bounds of $$\mathcal{D}$$? 2. Can this problem be solved geometrically without a change of variables? 3. How do you determine when a change of variables is necessary? 4. What other transformations could map $$\mathcal{D}$$ to a rectangle? 5. How does the Jacobian determinant affect the evaluation of an integral? --- ### Tip: When performing a change of variables, always verify that the transformation is invertible and maps the original region correctly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Double Integrals
Change of Variables
Jacobian Determinants
Integration in Multivariable Calculus

Formulas

Jacobian Determinant: ∂(u, v)/∂(x, y) = |∂u/∂x ∂u/∂y; ∂v/∂x ∂v/∂y|
Change of Variables Formula: ∫∫_D f(x, y) dx dy = ∫∫_R f(u, v) |∂(x, y)/∂(u, v)| du dv

Theorems

Change of Variables Theorem

Suitable Grade Level

Undergraduate Mathematics (Calculus III or Advanced Multivariable Calculus)