Math Problem Statement
Let 𝐼=∫∫(𝑥2−𝑦2)𝑑𝑥𝑑𝑦 I
∫ ∫ D ( x 2 − y 2 ) d x d y , where ={(𝑥,𝑦):2≤𝑥𝑦≤3,0≤𝑥−𝑦≤4,𝑥≥0,𝑦≥0} D
{ ( x , y ) : 2 ≤ x y ≤ 3 , 0 ≤ x − y ≤ 4 , x ≥ 0 , y ≥ 0 } Show that the mapping 𝑢=𝑥𝑦 u
x y , 𝑣=𝑥−𝑦 v
x − y maps D to the rectangle =[2,3]×[0,4] R
[ 2 , 3 ] × [ 0 , 4 ] .
(𝐚) ( a ) Compute ∂(𝑥,𝑦)/∂(𝑢,𝑣) ∂ ( x , y ) / ∂ ( u , v ) by first computing ∂(𝑢,𝑣)/∂(𝑥,𝑦) ∂ ( u , v ) / ∂ ( x , y ) .
(𝐛) ( b ) Use the Change of Variables Formula to show that 𝐼 I is equal to the integral of 𝑓(𝑢,𝑣)=𝑣 f ( u , v )
v over R and evaluate.
Solution
We will address this problem in steps.
Step 1: Show that the mapping maps to
The mapping is defined as:
Constraints:
- : This directly maps to .
- : This directly maps to .
- : These ensure and remain in the first quadrant.
Thus, the region defined by these constraints maps to the rectangle in the -plane.
Step 2: Compute by first finding
Compute
We have:
Take partial derivatives:
Thus, the Jacobian determinant is:
\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} y & x \\ 1 & -1 \end{vmatrix}.$$ Compute the determinant: $$\frac{\partial(u, v)}{\partial(x, y)} = y(-1) - x(1) = -y - x = -(x + y).$$ #### Find $$\frac{\partial(x, y)}{\partial(u, v)}$$ The Jacobian $$\frac{\partial(x, y)}{\partial(u, v)}$$ is the reciprocal of $$\frac{\partial(u, v)}{\partial(x, y)}$$: $$\frac{\partial(x, y)}{\partial(u, v)} = \frac{1}{-(x + y)}.$$ --- ### Step 3: Express $$(x, y)$$ in terms of $$(u, v)$$ From the definitions: $$x = \frac{u}{v + 1}, \quad y = \frac{uv}{v + 1}.$$ Substitute these into $$- (x + y)$$: $$x + y = \frac{u}{v + 1} + \frac{uv}{v + 1} = \frac{u(1 + v)}{v + 1} = u.$$ Thus: $$\frac{\partial(x, y)}{\partial(u, v)} = \frac{1}{-u}.$$ --- ### Step 4: Use the Change of Variables Formula The integral becomes: $$I = \int \int_{\mathcal{D}} (x^2 - y^2) \, dx \, dy.$$ Under the change of variables $$(u, v)$$, the integral transforms as: $$I = \int \int_{\mathcal{R}} f(u, v) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \, du \, dv,$$ where $$f(u, v) = v$$. Substitute $$\left| \frac{\partial(x, y)}{\partial(u, v)} \right| = \frac{1}{u}$$: $$I = \int_2^3 \int_0^4 v \cdot \frac{1}{u} \, dv \, du.$$ --- ### Step 5: Evaluate the Integral Split the integral: $$I = \int_2^3 \frac{1}{u} \left( \int_0^4 v \, dv \right) du.$$ Evaluate the inner integral: $$\int_0^4 v \, dv = \left[ \frac{v^2}{2} \right]_0^4 = \frac{4^2}{2} - \frac{0^2}{2} = 8.$$ Thus: $$I = \int_2^3 \frac{8}{u} \, du.$$ Evaluate the remaining integral: $$\int_2^3 \frac{8}{u} \, du = 8 \int_2^3 \frac{1}{u} \, du = 8 \ln u \Big|_2^3 = 8 (\ln 3 - \ln 2) = 8 \ln\left(\frac{3}{2}\right).$$ --- ### Final Answer: $$I = 8 \ln\left(\frac{3}{2}\right).$$ --- Would you like more details or assistance with related topics? --- ### Related Questions: 1. What happens if we modify the bounds of $$\mathcal{D}$$? 2. Can this problem be solved geometrically without a change of variables? 3. How do you determine when a change of variables is necessary? 4. What other transformations could map $$\mathcal{D}$$ to a rectangle? 5. How does the Jacobian determinant affect the evaluation of an integral? --- ### Tip: When performing a change of variables, always verify that the transformation is invertible and maps the original region correctly.Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Double Integrals
Change of Variables
Jacobian Determinants
Integration in Multivariable Calculus
Formulas
Jacobian Determinant: ∂(u, v)/∂(x, y) = |∂u/∂x ∂u/∂y; ∂v/∂x ∂v/∂y|
Change of Variables Formula: ∫∫_D f(x, y) dx dy = ∫∫_R f(u, v) |∂(x, y)/∂(u, v)| du dv
Theorems
Change of Variables Theorem
Suitable Grade Level
Undergraduate Mathematics (Calculus III or Advanced Multivariable Calculus)
Related Recommendation
Evaluate Double Integral Using Change of Variables for Circular Regions
Solve Double Integral by Changing to Polar Coordinates
Change the Order of Integration for Double Integral Problem
Transforming Double Integrals: Polar Coordinates Example
Double Integral of sin(y-x)/(y+x) Over Region D with Change of Variables