Math Problem Statement

Find the domain of f(x). f(x)= 8−x ​

Solution

The given function is:

f(x)=8xf(x) = 8 - x

Since this is a linear function, it doesn't have any restrictions such as square roots (which would require non-negative values) or denominators (which could lead to division by zero). Therefore, the domain of the function is all real numbers, denoted as:

Domain of f(x):(,)\text{Domain of } f(x): (-\infty, \infty)

This means that xx can be any real number.

Would you like a detailed explanation of how to determine domains for different types of functions?


Here are 5 questions related to this concept:

  1. What is the domain of a square root function like f(x)=xf(x) = \sqrt{x}?
  2. How do you determine the domain of a rational function?
  3. What happens to the domain when you have a function involving logarithms?
  4. How does the domain change for trigonometric functions like sin(x)\sin(x) or cos(x)\cos(x)?
  5. Can the domain of a function ever be a finite set of numbers?

Tip: Always check for potential restrictions in the function, such as square roots or denominators, when finding the domain.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Linear Functions
Domains of Functions

Formulas

f(x) = 8 - x

Theorems

No specific theorems required for linear functions, general domain analysis

Suitable Grade Level

Grades 6-8