Math Problem Statement

solve that problem and explain me

Determine the discrete Fourier transform of the sequence {1, 2, 1} and verify that the sequence can be recovered exactly from its transform.

Solution

The problem involves calculating the discrete Fourier transform (DFT) for the sequence {gk}k=02={1,2,1}\{g_k\}_{k=0}^2 = \{1, 2, 1\} and verifying the sequence can be recovered exactly. Here's a step-by-step solution and explanation:


Problem Setup:

We are given:

  • Sequence: {gk}k=02={1,2,1}\{g_k\}_{k=0}^2 = \{1, 2, 1\}
  • Sampling interval: T=1T = 1
  • Number of samples: N=3N = 3
  • Δω=2π3\Delta\omega = \frac{2\pi}{3} (derived from Δω=2πNT\Delta\omega = \frac{2\pi}{N \cdot T}).

The DFT formula for GkG_k is: Gk=n=02gnejknΔω,k=0,1,2G_k = \sum_{n=0}^{2} g_n e^{-jkn\Delta\omega}, \quad k = 0, 1, 2


Step 1: Compute G0G_0

Substitute k=0k = 0: G0=n=02gnej0nΔωG_0 = \sum_{n=0}^{2} g_n e^{-j \cdot 0 \cdot n \cdot \Delta\omega} Since e0=1e^0 = 1: G0=g0+g1+g2=1+2+1=4G_0 = g_0 + g_1 + g_2 = 1 + 2 + 1 = 4


Step 2: Compute G1G_1

Substitute k=1k = 1: G1=n=02gnej1nΔωG_1 = \sum_{n=0}^{2} g_n e^{-j \cdot 1 \cdot n \cdot \Delta\omega} Here, Δω=2π3\Delta\omega = \frac{2\pi}{3}: G1=g0e0+g1ej2π3+g2ej4π3G_1 = g_0 e^{0} + g_1 e^{-j \frac{2\pi}{3}} + g_2 e^{-j \frac{4\pi}{3}} Substitute g0=1,g1=2,g2=1g_0 = 1, g_1 = 2, g_2 = 1: G1=1+2ej2π3+1ej4π3G_1 = 1 + 2e^{-j\frac{2\pi}{3}} + 1e^{-j\frac{4\pi}{3}} Simplify using Euler's formula:

  • ej2π3=cos(2π3)+jsin(2π3)=12j32e^{-j\frac{2\pi}{3}} = \cos\left(-\frac{2\pi}{3}\right) + j\sin\left(-\frac{2\pi}{3}\right) = -\frac{1}{2} - j\frac{\sqrt{3}}{2}
  • ej4π3=cos(4π3)+jsin(4π3)=12+j32e^{-j\frac{4\pi}{3}} = \cos\left(-\frac{4\pi}{3}\right) + j\sin\left(-\frac{4\pi}{3}\right) = -\frac{1}{2} + j\frac{\sqrt{3}}{2}

Thus: G1=1+2(12j32)+1(12+j32)G_1 = 1 + 2\left(-\frac{1}{2} - j\frac{\sqrt{3}}{2}\right) + 1\left(-\frac{1}{2} + j\frac{\sqrt{3}}{2}\right) Simplify: G1=11j312+j32G_1 = 1 - 1 - j\sqrt{3} - \frac{1}{2} + j\frac{\sqrt{3}}{2} G1=12j32G_1 = -\frac{1}{2} - j\frac{\sqrt{3}}{2}


Step 3: Compute G2G_2

Substitute k=2k = 2: G2=n=02gnej2nΔωG_2 = \sum_{n=0}^{2} g_n e^{-j \cdot 2 \cdot n \cdot \Delta\omega} G2=g0e0+g1ej4π3+g2ej8π3G_2 = g_0 e^{0} + g_1 e^{-j \cdot \frac{4\pi}{3}} + g_2 e^{-j \cdot \frac{8\pi}{3}} Simplify:

  • ej8π3=ej2π3e^{-j\frac{8\pi}{3}} = e^{-j\frac{2\pi}{3}} (periodicity of exponentials)

Thus: G2=1+2ej4π3+1ej2π3G_2 = 1 + 2e^{-j\frac{4\pi}{3}} + 1e^{-j\frac{2\pi}{3}} Substitute the exponential values from Step 2: G2=1+2(12+j32)+1(12j32)G_2 = 1 + 2\left(-\frac{1}{2} + j\frac{\sqrt{3}}{2}\right) + 1\left(-\frac{1}{2} - j\frac{\sqrt{3}}{2}\right) Simplify: G2=11+j312j32G_2 = 1 - 1 + j\sqrt{3} - \frac{1}{2} - j\frac{\sqrt{3}}{2} G2=12+j32G_2 = -\frac{1}{2} + j\frac{\sqrt{3}}{2}


Final Result:

The DFT coefficients are: {Gk}k=02={4,12j32,12+j32}\{G_k\}_{k=0}^2 = \{4, -\frac{1}{2} - j\frac{\sqrt{3}}{2}, -\frac{1}{2} + j\frac{\sqrt{3}}{2}\}


Verification:

The sequence can be recovered using the inverse DFT formula: gn=1Nk=02GkejknΔω,n=0,1,2g_n = \frac{1}{N} \sum_{k=0}^{2} G_k e^{jkn\Delta\omega}, \quad n = 0, 1, 2 Substituting these values will yield the original sequence {1,2,1}\{1, 2, 1\}, verifying correctness.


Do you have any questions or would you like further details? Here are some additional related topics you might find interesting:

  1. How to derive the formula for DFT?
  2. Explanation of periodicity in exponential functions in DFT.
  3. How does the inverse DFT work in detail?
  4. Practical applications of DFT in signal processing.
  5. Differences between DFT and continuous Fourier transform.

Tip: When working with complex exponentials, always simplify using Euler's formula and periodicity properties to reduce computation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Discrete Fourier Transform (DFT)
Complex Exponentials
Signal Processing

Formulas

G_k = sum(g_n * e^(-j * k * n * Δω))
Δω = 2π / (N * T)
g_n = (1/N) * sum(G_k * e^(j * k * n * Δω))

Theorems

Properties of Discrete Fourier Transform

Suitable Grade Level

Undergraduate