Math Problem Statement

Find the directional derivative for f(x, y) = e^x sin y in the direction of vector v = -6i + 8j at the point P(0, π/3).

Solution

To find the directional derivative Duf(x,y)D_{\mathbf{u}} f(x, y) of f(x,y)=exsinyf(x, y) = e^x \sin y at the point P(0,π3)P\left(0, \frac{\pi}{3}\right) in the direction of the vector v=6i+8j\mathbf{v} = -6\mathbf{i} + 8\mathbf{j}, we will follow these steps:

Step 1: Compute the Gradient of f(x,y)f(x, y)

The gradient of f(x,y)f(x, y), denoted as f(x,y)\nabla f(x, y), is: f(x,y)=(fx,fy)\nabla f(x, y) = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) For f(x,y)=exsinyf(x, y) = e^x \sin y:

  1. Partial derivative with respect to xx: fx=exsiny\frac{\partial f}{\partial x} = e^x \sin y
  2. Partial derivative with respect to yy: fy=excosy\frac{\partial f}{\partial y} = e^x \cos y

Thus, f(x,y)=(exsiny,excosy)\nabla f(x, y) = \left( e^x \sin y, e^x \cos y \right)

Step 2: Evaluate f(x,y)\nabla f(x, y) at P(0,π3)P\left(0, \frac{\pi}{3}\right)

Substitute x=0x = 0 and y=π3y = \frac{\pi}{3} into the gradient:

  1. For fx\frac{\partial f}{\partial x}: e0sin(π3)=132=32e^0 \sin\left(\frac{\pi}{3}\right) = 1 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}
  2. For fy\frac{\partial f}{\partial y}: e0cos(π3)=112=12e^0 \cos\left(\frac{\pi}{3}\right) = 1 \cdot \frac{1}{2} = \frac{1}{2}

So, f(0,π3)=(32,12)\nabla f\left(0, \frac{\pi}{3}\right) = \left( \frac{\sqrt{3}}{2}, \frac{1}{2} \right).

Step 3: Normalize the Direction Vector v\mathbf{v}

The direction vector v=6i+8j\mathbf{v} = -6\mathbf{i} + 8\mathbf{j} needs to be converted into a unit vector u\mathbf{u}.

  1. Magnitude of v\mathbf{v}: v=(6)2+82=36+64=100=10\|\mathbf{v}\| = \sqrt{(-6)^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10
  2. Unit vector u\mathbf{u}: u=vv=6i+8j10=0.6i+0.8j\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{-6\mathbf{i} + 8\mathbf{j}}{10} = -0.6\mathbf{i} + 0.8\mathbf{j}

Step 4: Compute the Directional Derivative

The directional derivative of ff at P(0,π3)P\left(0, \frac{\pi}{3}\right) in the direction of u\mathbf{u} is: Duf(x,y)=f(x,y)uD_{\mathbf{u}} f(x, y) = \nabla f(x, y) \cdot \mathbf{u} At P(0,π3)P\left(0, \frac{\pi}{3}\right): [ D_{\mathbf{u}} f\left(0, \frac{\pi}{3}\right) = \left( \frac{\sqrt{3}}{2}, \frac{1}{2} \right) \cdot \left( -0.6, 0

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Directional Derivative
Gradient
Vector Analysis

Formulas

Gradient of f(x, y): ∇f(x, y) = (∂f/∂x, ∂f/∂y)
Directional Derivative: D_uf(x, y) = ∇f(x, y) · u
Magnitude of vector: ||v|| = √(v_x^2 + v_y^2)
Unit vector: u = v / ||v||

Theorems

Directional Derivative Theorem
Dot Product for Projection

Suitable Grade Level

Grades 11-12 or Calculus I (College)