Math Problem Statement

Tentukan turunan dari fungsi berikut (including chain rule, product rule, quotient rule, and implicit differentiation).

Solution

Let’s go through the derivatives step by step:

1. y=sin2(3x4)y = \sin^2(3x - 4)

To find the derivative, we apply the chain rule: dydx=2sin(3x4)cos(3x4)ddx(3x4)\frac{dy}{dx} = 2 \sin(3x - 4) \cdot \cos(3x - 4) \cdot \frac{d}{dx}(3x - 4) Since ddx(3x4)=3\frac{d}{dx}(3x - 4) = 3: dydx=6sin(3x4)cos(3x4)\frac{dy}{dx} = 6 \sin(3x - 4) \cdot \cos(3x - 4) Using the double angle identity for sine, this simplifies to: dydx=3sin(6x8)\frac{dy}{dx} = 3 \sin(6x - 8)

2. y=cos2x3x4y = \frac{\cos 2x}{3x - 4}

To differentiate this, we use the quotient rule. Let u=cos2xu = \cos 2x and v=3x4v = 3x - 4. The quotient rule states: dydx=vuuvv2\frac{dy}{dx} = \frac{v \cdot u' - u \cdot v'}{v^2} First, find u=2sin2xu' = -2 \sin 2x and v=3v' = 3: dydx=(3x4)(2sin2x)cos2x(3)(3x4)2\frac{dy}{dx} = \frac{(3x - 4)(-2 \sin 2x) - \cos 2x(3)}{(3x - 4)^2} Simplifying: dydx=6xsin2x+8sin2x3cos2x(3x4)2\frac{dy}{dx} = \frac{-6x \sin 2x + 8 \sin 2x - 3 \cos 2x}{(3x - 4)^2}

3. y=12tanxsin2xy = \frac{1}{2} \tan x \sin 2x

We apply the product rule: dydx=12[sec2xsin2x+tanx2cos2x]\frac{dy}{dx} = \frac{1}{2} \left[ \sec^2 x \sin 2x + \tan x \cdot 2 \cos 2x \right] This simplifies to: dydx=12[sec2xsin2x+2tanxcos2x]\frac{dy}{dx} = \frac{1}{2} \left[ \sec^2 x \sin 2x + 2 \tan x \cos 2x \right]

4. Find y2yy'' - 2y' if y=sin3xcos3xy = \sin 3x - \cos 3x

First, find the first derivative: y=3cos3x+3sin3xy' = 3 \cos 3x + 3 \sin 3x Then, find the second derivative: y=9sin3x+9cos3xy'' = -9 \sin 3x + 9 \cos 3x Now, calculate y2yy'' - 2y': y2y=(9sin3x+9cos3x)2(3cos3x+3sin3x)y'' - 2y' = (-9 \sin 3x + 9 \cos 3x) - 2(3 \cos 3x + 3 \sin 3x) y2y=15sin3x+3cos3xy'' - 2y' = -15 \sin 3x + 3 \cos 3x

5. Solve for xy+2x5yy2=0xy + 2x - 5y - y^2 = 0

We use implicit differentiation: ddx(xy)+ddx(2x)ddx(5y)ddx(y2)=0\frac{d}{dx}(xy) + \frac{d}{dx}(2x) - \frac{d}{dx}(5y) - \frac{d}{dx}(y^2) = 0 The derivative of xyxy is: ddx(xy)=xdydx+y\frac{d}{dx}(xy) = x \frac{dy}{dx} + y For 2x2x, ddx(2x)=2\frac{d}{dx}(2x) = 2. For 5y5y, ddx(5y)=5dydx\frac{d}{dx}(5y) = 5 \frac{dy}{dx}. For y2y^2, ddx(y2)=2ydydx\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}.

Thus: xdydx+y+25dydx2ydydx=0x \frac{dy}{dx} + y + 2 - 5 \frac{dy}{dx} - 2y \frac{dy}{dx} = 0

6. y=sin2(x2x)y = \sin^2(x^2 - x) using the chain rule

Using the chain rule: dydx=2sin(x2x)cos(x2x)ddx(x2x)\frac{dy}{dx} = 2 \sin(x^2 - x) \cdot \cos(x^2 - x) \cdot \frac{d}{dx}(x^2 - x) Since ddx(x2x)=2x1\frac{d}{dx}(x^2 - x) = 2x - 1, we get: dydx=2sin(x2x)cos(x2x)(2x1)\frac{dy}{dx} = 2 \sin(x^2 - x) \cdot \cos(x^2 - x) \cdot (2x - 1)

7. Differentiate xy2+yx2=6xy^2 + y - x^2 = 6

Using implicit differentiation: ddx(xy2)+ddx(y)ddx(x2)=0\frac{d}{dx}(xy^2) + \frac{d}{dx}(y) - \frac{d}{dx}(x^2) = 0 For xy2xy^2, apply the product rule: ddx(xy2)=x2ydydx+y2\frac{d}{dx}(xy^2) = x \cdot 2y \frac{dy}{dx} + y^2 For yy, ddx(y)=dydx\frac{d}{dx}(y) = \frac{dy}{dx}. For x2x^2, ddx(x2)=2x\frac{d}{dx}(x^2) = 2x.

Thus: x2ydydx+y2+dydx2x=0x \cdot 2y \frac{dy}{dx} + y^2 + \frac{dy}{dx} - 2x = 0

Would you like to go deeper into any of these steps or explanations? Here are some additional questions you might find helpful:

  1. How do you apply the chain rule to trigonometric functions?
  2. What is the quotient rule and how does it differ from the product rule?
  3. How can implicit differentiation help when both variables depend on xx?
  4. What is the role of the double angle identity in simplifying trigonometric expressions?
  5. Can you explain how the chain rule is used in higher-order derivatives?

Tip: When using implicit differentiation, always remember that the derivative of yy with respect to xx is dydx\frac{dy}{dx}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Chain Rule
Product Rule
Quotient Rule
Implicit Differentiation

Formulas

Chain Rule: dy/dx = dy/du * du/dx
Quotient Rule: (v * du/dx - u * dv/dx) / v^2
Product Rule: d(uv)/dx = u'v + uv'
Implicit Differentiation: d/dx[f(x, y)] = ∂f/∂x + ∂f/∂y * dy/dx

Theorems

Trigonometric identities
Quotient Rule
Product Rule
Chain Rule

Suitable Grade Level

Grades 11-12