Math Problem Statement

Differentieer en vereenvoudig zo ver mogelijk. Indien er geen gebroken of negatieve exponenten in de functie staan, zijn die ook niet in je eindantwoord te vinden! Maak het makkelijk met alleen berekeningen

Differentieer en vereenvoudig zo ver mogelijk. Indien er geen gebroken of negatieve exponenten in de functie staan, zijn die ook niet in je eindantwoord te vinden! Maak het makkelijk met alleen berekeningen

Solution

Let’s differentiate both functions f(x)=x23x+1f(x) = x \cdot 2^{3x+1} and g(x)=3log(3x+1)g(x) = 3^{\log(3x + 1)} and simplify the derivatives as much as possible.

Problem 9: Differentiate f(x)=x23x+1f(x) = x \cdot 2^{3x+1}

  1. Let f(x)=x23x+1f(x) = x \cdot 2^{3x+1}.

  2. Use the product rule for differentiation: (uv)=uv+uv(u \cdot v)' = u'v + uv', where u=xu = x and v=23x+1v = 2^{3x+1}.

    • u=1u' = 1.
    • For v=23x+1v = 2^{3x+1}, use the chain rule. The derivative of 23x+12^{3x+1} is 23x+1ln(2)32^{3x+1} \cdot \ln(2) \cdot 3 because of the exponent’s derivative.
  3. Applying the product rule: f(x)=(1)23x+1+x23x+1ln(2)3.f'(x) = (1) \cdot 2^{3x+1} + x \cdot 2^{3x+1} \cdot \ln(2) \cdot 3.

  4. Simplify: f(x)=23x+1+3x23x+1ln(2).f'(x) = 2^{3x+1} + 3x \cdot 2^{3x+1} \cdot \ln(2).

  5. Factor out 23x+12^{3x+1}: f(x)=23x+1(1+3xln(2)).f'(x) = 2^{3x+1} \left(1 + 3x \ln(2)\right).

Problem 10: Differentiate g(x)=3log(3x+1)g(x) = 3^{\log(3x + 1)}

  1. Rewrite g(x)=3log(3x+1)g(x) = 3^{\log(3x + 1)}.

    Notice that 3log(3x+1)=eln(3)log(3x+1)3^{\log(3x + 1)} = e^{\ln(3) \cdot \log(3x + 1)}, so we can rewrite g(x)g(x) in terms of ee for easier differentiation if needed.

  2. Differentiate g(x)g(x) using the chain rule. For a function af(x)a^{f(x)}, the derivative is af(x)ln(a)f(x)a^{f(x)} \cdot \ln(a) \cdot f'(x).

  3. In this case:

    • a=3a = 3.
    • f(x)=log(3x+1)f(x) = \log(3x + 1).
  4. Differentiate f(x)=log(3x+1)f(x) = \log(3x + 1): f(x)=33x+1.f'(x) = \frac{3}{3x + 1}.

  5. Therefore, g(x)=3log(3x+1)ln(3)33x+1g'(x) = 3^{\log(3x + 1)} \cdot \ln(3) \cdot \frac{3}{3x + 1}.

  6. Substitute back: g(x)=3log(3x+1)3ln(3)3x+1.g'(x) = 3^{\log(3x + 1)} \cdot \frac{3 \ln(3)}{3x + 1}.

This provides the derivatives of both functions, simplified as requested.

Would you like further clarification or details on any step? Here are some follow-up questions you might consider:

  1. What are the rules for differentiating exponential functions with variable bases?
  2. How does the chain rule apply when differentiating composite functions?
  3. How can you verify the derivative of an exponential function involving a logarithmic expression?
  4. What is the purpose of factoring out common terms in a derivative?
  5. How would the differentiation process change if a different base was used in the logarithmic function?

Tip: Always check if you can simplify the expression by factoring out terms after applying the differentiation rules. This often leads to a cleaner and more interpretable answer.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Exponential Functions
Logarithmic Functions
Product Rule
Chain Rule

Formulas

Product Rule: (u * v)' = u' * v + u * v'
Chain Rule for Exponentials: d/dx[a^(f(x))] = a^(f(x)) * ln(a) * f'(x)

Theorems

Derivative of Exponential and Logarithmic Functions

Suitable Grade Level

Undergraduate Mathematics