Math Problem Statement

Form the difference equation by eliminating the arbitrary constants a, b, and c of the equation yn = a cos(nθ) + b sin(nθ).

Solution

The given equation is:

yn=acos(nθ)+bsin(nθ),y_n = a \cos(n\theta) + b \sin(n\theta),

where aa, bb, and θ\theta are constants. To eliminate the arbitrary constants aa and bb, we need to form a difference equation involving yny_n.

Steps:

  1. Express yn+1y_{n+1}: Using the given equation: yn+1=acos((n+1)θ)+bsin((n+1)θ).y_{n+1} = a \cos((n+1)\theta) + b \sin((n+1)\theta). Expand using trigonometric angle addition formulas: cos((n+1)θ)=cos(nθ)cosθsin(nθ)sinθ,\cos((n+1)\theta) = \cos(n\theta)\cos\theta - \sin(n\theta)\sin\theta, sin((n+1)θ)=sin(nθ)cosθ+cos(nθ)sinθ.\sin((n+1)\theta) = \sin(n\theta)\cos\theta + \cos(n\theta)\sin\theta. Substitute into yn+1y_{n+1}: [ y_{n+1} = a[\cos(n\theta)\cos\theta - \sin(n\theta)\sin\theta] + b[\sin(n\theta)\cos\theta + \cos(n\theta)\sin\theta]. ] Simplify: yn+1=(acosθ+bsinθ)cos(nθ)+(bcosθasinθ)sin(nθ).y_{n+1} = (a\cos\theta + b\sin\theta)\cos(n\theta) + (b\cos\theta - a\sin\theta)\sin(n\theta).

  2. Express yn1y_{n-1}: Similarly, expand yn1y_{n-1}: [ y_{n-1} = a[\cos(n\theta)\cos\theta + \sin(n\theta)\sin\theta] + b[\sin(n\theta)\cos\theta - \cos(n\theta)\sin\theta]. ] Simplify: yn1=(acosθ+bsinθ)cos(nθ)(bcosθasinθ)sin(nθ).y_{n-1} = (a\cos\theta + b\sin\theta)\cos(n\theta) - (b\cos\theta - a\sin\theta)\sin(n\theta).

  3. Eliminate aa and bb: From yny_n, yn+1y_{n+1}, and yn1y_{n-1}, observe that aa and bb are combined in terms involving cos(nθ)\cos(n\theta) and sin(nθ)\sin(n\theta). Use the fact that: yn+1+yn1=2(acosθ+bsinθ)cos(nθ),y_{n+1} + y_{n-1} = 2(a\cos\theta + b\sin\theta)\cos(n\theta), and yn+1yn1=2(bcosθasinθ)sin(nθ).y_{n+1} - y_{n-1} = 2(b\cos\theta - a\sin\theta)\sin(n\theta). Combine these equations into a single second-order difference equation: yn+12cosθyn+yn1=0.y_{n+1} - 2\cos\theta y_n + y_{n-1} = 0.

Final Difference Equation:

yn+12cosθyn+yn1=0.y_{n+1} - 2\cos\theta y_n + y_{n-1} = 0.

This equation eliminates the constants aa and bb, leaving a purely recursive relationship.


Would you like a detailed breakdown of any step?

Related Questions:

  1. How can trigonometric identities simplify recursive equations?
  2. What methods solve second-order linear difference equations?
  3. How does the angle addition formula apply to recursive problems?
  4. Can this approach be extended to equations with exponential or logarithmic terms?
  5. What are practical applications of such difference equations?

Tip:

When dealing with trigonometric functions in recursive relations, leveraging symmetry and periodicity can greatly simplify the process.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Difference Equations
Trigonometry
Recursive Relations

Formulas

Angle addition formulas: cos(n+1)θ = cos(nθ)cos(θ) - sin(nθ)sin(θ)
Angle addition formulas: sin(n+1)θ = sin(nθ)cos(θ) + cos(nθ)sin(θ)
Second-order difference equation: yn+1 - 2cos(θ)yn + yn-1 = 0

Theorems

Trigonometric Angle Addition Identities

Suitable Grade Level

Undergraduate Mathematics