Math Problem Statement

In this exercise we consider the multiplicative group Z ∗ 31. 1. Determine the order of the element 3

Solution

To determine the order of an element gg in the multiplicative group Z31\mathbb{Z}_{31}^*, we need to find the smallest positive integer kk such that:

gk1 (mod 31)g^k \equiv 1 \ (\text{mod}\ 31)

In this case, the element is g=3g = 3, and the group Z31\mathbb{Z}_{31}^* consists of all the integers from 1 to 30 under multiplication modulo 31.

Step 1: Determine the size of Z31\mathbb{Z}_{31}^*

Since 31 is a prime number, the group Z31\mathbb{Z}_{31}^* has 311=3031 - 1 = 30 elements. Therefore, the order of the group Z31\mathbb{Z}_{31}^* is 30.

Step 2: Find the order of the element 3

The order of the element 3 is the smallest positive integer kk such that 3k1 (mod 31)3^k \equiv 1 \ (\text{mod}\ 31).

To find kk, we can try successive powers of 3 modulo 31 until we get 1.

313 (mod 31)3^1 \equiv 3 \ (\text{mod}\ 31)

32=9 (mod 31)3^2 = 9 \ (\text{mod}\ 31)

33=27 (mod 31)3^3 = 27 \ (\text{mod}\ 31)

34=3×27=8119 (mod 31)3^4 = 3 \times 27 = 81 \equiv 19 \ (\text{mod}\ 31)

35=3×19=5726 (mod 31)3^5 = 3 \times 19 = 57 \equiv 26 \ (\text{mod}\ 31)

36=3×26=7816 (mod 31)3^6 = 3 \times 26 = 78 \equiv 16 \ (\text{mod}\ 31)

37=3×16=4817 (mod 31)3^7 = 3 \times 16 = 48 \equiv 17 \ (\text{mod}\ 31)

38=3×17=5120 (mod 31)3^8 = 3 \times 17 = 51 \equiv 20 \ (\text{mod}\ 31)

39=3×20=6029 (mod 31)3^9 = 3 \times 20 = 60 \equiv 29 \ (\text{mod}\ 31)

310=3×29=8725 (mod 31)3^{10} = 3 \times 29 = 87 \equiv 25 \ (\text{mod}\ 31)

311=3×25=7513 (mod 31)3^{11} = 3 \times 25 = 75 \equiv 13 \ (\text{mod}\ 31)

312=3×13=398 (mod 31)3^{12} = 3 \times 13 = 39 \equiv 8 \ (\text{mod}\ 31)

313=3×8=24 (mod 31)3^{13} = 3 \times 8 = 24 \ (\text{mod}\ 31)

314=3×24=7210 (mod 31)3^{14} = 3 \times 24 = 72 \equiv 10 \ (\text{mod}\ 31)

315=3×10=30 (mod 31)3^{15} = 3 \times 10 = 30 \ (\text{mod}\ 31)

316=3×30=9028 (mod 31)3^{16} = 3 \times 30 = 90 \equiv 28 \ (\text{mod}\ 31)

317=3×28=8422 (mod 31)3^{17} = 3 \times 28 = 84 \equiv 22 \ (\text{mod}\ 31)

318=3×22=664 (mod 31)3^{18} = 3 \times 22 = 66 \equiv 4 \ (\text{mod}\ 31)

319=3×4=12 (mod 31)3^{19} = 3 \times 4 = 12 \ (\text{mod}\ 31)

320=3×12=365 (mod 31)3^{20} = 3 \times 12 = 36 \equiv 5 \ (\text{mod}\ 31)

321=3×5=15 (mod 31)3^{21} = 3 \times 5 = 15 \ (\text{mod}\ 31)

322=3×15=4514 (mod 31)3^{22} = 3 \times 15 = 45 \equiv 14 \ (\text{mod}\ 31)

323=3×14=4211 (mod 31)3^{23} = 3 \times 14 = 42 \equiv 11 \ (\text{mod}\ 31)

324=3×11=332 (mod 31)3^{24} = 3 \times 11 = 33 \equiv 2 \ (\text{mod}\ 31)

325=3×2=6 (mod 31)3^{25} = 3 \times 2 = 6 \ (\text{mod}\ 31)

326=3×6=18 (mod 31)3^{26} = 3 \times 6 = 18 \ (\text{mod}\ 31)

327=3×18=5423 (mod 31)3^{27} = 3 \times 18 = 54 \equiv 23 \ (\text{mod}\ 31)

328=3×23=697 (mod 31)3^{28} = 3 \times 23 = 69 \equiv 7 \ (\text{mod}\ 31)

329=3×7=21 (mod 31)3^{29} = 3 \times 7 = 21 \ (\text{mod}\ 31)

330=3×21=631 (mod 31)3^{30} = 3 \times 21 = 63 \equiv 1 \ (\text{mod}\ 31)

The first occurrence of 1 is when k=30k = 30.

Conclusion:

The order of the element 3 in Z31\mathbb{Z}_{31}^* is 30.


Do you have any questions or would you like further details? Here are some related questions you might find interesting:

  1. How do you determine the order of other elements in Z31\mathbb{Z}_{31}^*?
  2. What is the significance of the order of an element in a group?
  3. How does the order of an element relate to the structure of the group?
  4. Can you find a generator for Z31\mathbb{Z}_{31}^*?
  5. What is the connection between the order of an element and its cyclic subgroup?

Tip: When working with groups like Zp\mathbb{Z}_{p}^*, where pp is a prime number, the order of an element always divides the order of the group (which is p1p-1). This property can help in narrowing down the possible values for the order of any given element.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Group theory
Modular arithmetic
Multiplicative groups

Formulas

g^k ≡ 1 (mod p)

Theorems

Order of an element in a group
Properties of prime numbers

Suitable Grade Level

Advanced High School