Math Problem Statement

Say whether it is even, odd or neither. Give reasons

Solution

To determine whether the function g(x)=x4+3x21g(x) = x^4 + 3x^2 - 1 is even, odd, or neither, we can follow these steps:

1. Check for Evenness:

A function g(x)g(x) is even if g(x)=g(x)g(-x) = g(x) for all xx in the domain.

Let's compute g(x)g(-x): g(x)=(x)4+3(x)21g(-x) = (-x)^4 + 3(-x)^2 - 1

Simplifying each term: (x)4=x4(since raising to an even power makes it positive)(-x)^4 = x^4 \quad \text{(since raising to an even power makes it positive)} 3(x)2=3x2(again, the even power makes it positive)3(-x)^2 = 3x^2 \quad \text{(again, the even power makes it positive)} 1 remains the same.-1 \text{ remains the same.}

Therefore: g(x)=x4+3x21g(-x) = x^4 + 3x^2 - 1

Since g(x)=g(x)g(-x) = g(x), the function g(x)g(x) is even.

2. Check for Oddness:

A function g(x)g(x) is odd if g(x)=g(x)g(-x) = -g(x) for all xx in the domain.

We've already found that g(x)=g(x)g(-x) = g(x), and for the function to be odd, g(x)g(-x) should equal g(x)-g(x). However: g(x)=x4+3x21g(x) = x^4 + 3x^2 - 1 g(x)=(x4+3x21)=x43x2+1-g(x) = -(x^4 + 3x^2 - 1) = -x^4 - 3x^2 + 1

Clearly, g(x)g(x)g(-x) \neq -g(x). So, the function is not odd.

Conclusion:

The function ( g

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Functions
Even and Odd Functions
Polynomials

Formulas

-

Theorems

-

Suitable Grade Level

Advanced High School