Math Problem Statement

find determinant in detail

Find the determinant of the matrix A - λI in detail.

Solution

sympy import symbols, Matrix, det

Define the variable lambda

lam = symbols('lambda')

Define the matrix A - λI

matrix = Matrix([ [2 - lam, 2, 1], [1, 3 - lam, 1], [1, 2, 2 - lam] ])

Calculate the determinant

determinant = det(matrix) determinantThe determinant of the matrix AλIA - \lambda I is:

det(AλI)=λ3+7λ211λ+5\text{det}(A - \lambda I) = -\lambda^3 + 7\lambda^2 - 11\lambda + 5

Detailed Steps:

  1. Matrix Setup: The matrix AλIA - \lambda I is: 2 - \lambda & 2 & 1 \\ 1 & 3 - \lambda & 1 \\ 1 & 2 & 2 - \lambda \end{bmatrix}$$
  2. Determinant Formula: The determinant of a 3×33 \times 3 matrix is calculated as: det=a(eifh)b(difg)+c(dheg)\text{det} = a(ei − fh) − b(di − fg) + c(dh − eg) where the matrix is: a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
  3. Apply the Formula: Substituting the elements: - 2\big((1)(2-\lambda) - (1)(1)\big) + 1\big((1)(2) - (1)(3-\lambda)\big)$$
  4. Simplify: Expanding and simplifying results in: λ3+7λ211λ+5-\lambda^3 + 7\lambda^2 - 11\lambda + 5

Let me know if you'd like me to expand the determinant manually or clarify further!


Follow-up Questions:

  1. What are the eigenvalues of this matrix?
  2. Can you calculate the characteristic polynomial from this determinant?
  3. How does the determinant relate to the invertibility of the matrix AλIA - \lambda I?
  4. What happens when λ\lambda equals one of the roots of the determinant?
  5. How is the determinant used to compute eigenvectors?

Tip:

When solving determinants, always expand along the row or column with the most zeros to simplify calculations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Determinants
Eigenvalues

Formulas

Determinant of a 3x3 matrix: det(A) = a(ei − fh) − b(di − fg) + c(dh − eg)
Matrix setup for A - λI: Subtract λ from diagonal elements

Theorems

Determinant Theorem: det(A - λI) provides the characteristic polynomial
Properties of determinants: Relating determinant roots to eigenvalues

Suitable Grade Level

Undergraduate level (Linear Algebra Course)