Math Problem Statement

Знайдіть похідну від функції: y = ((x - 4) / (2x + 3))^7.

Solution

To find the derivative of the given function

y=(x42x+3)7,y = \left( \frac{x - 4}{2x + 3} \right)^7,

we will use the chain rule combined with the quotient rule for differentiation.

Step 1: General Chain Rule

The derivative of y=u7y = u^7, where u=x42x+3u = \frac{x - 4}{2x + 3}, is:

dydx=7u6dudx.\frac{dy}{dx} = 7u^6 \cdot \frac{du}{dx}.

So, we need to find dudx\frac{du}{dx}, where u=x42x+3u = \frac{x - 4}{2x + 3}.


Step 2: Quotient Rule for u=x42x+3u = \frac{x - 4}{2x + 3}

The quotient rule states:

ddx(f(x)g(x))=f(x)g(x)f(x)g(x)g(x)2.\frac{d}{dx} \left( \frac{f(x)}{g(x)} \right) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.

Here:

  • f(x)=x4f(x) = x - 4, so f(x)=1f'(x) = 1,
  • g(x)=2x+3g(x) = 2x + 3, so g(x)=2g'(x) = 2.

Substitute these into the quotient rule:

dudx=(1)(2x+3)(x4)(2)(2x+3)2.\frac{du}{dx} = \frac{(1)(2x + 3) - (x - 4)(2)}{(2x + 3)^2}.

Simplify the numerator:

(1)(2x+3)(x4)(2)=2x+32x+8=11.(1)(2x + 3) - (x - 4)(2) = 2x + 3 - 2x + 8 = 11.

Thus:

dudx=11(2x+3)2.\frac{du}{dx} = \frac{11}{(2x + 3)^2}.


Step 3: Combine Results

Substitute u=x42x+3u = \frac{x - 4}{2x + 3} and dudx\frac{du}{dx} into the chain rule:

dydx=7(x42x+3)611(2x+3)2.\frac{dy}{dx} = 7 \left( \frac{x - 4}{2x + 3} \right)^6 \cdot \frac{11}{(2x + 3)^2}.


Step 4: Simplify the Expression

Combine terms:

dydx=711(x4)6(2x+3)6+2=77(x4)6(2x+3)8.\frac{dy}{dx} = \frac{7 \cdot 11 \cdot (x - 4)^6}{(2x + 3)^{6 + 2}} = \frac{77 (x - 4)^6}{(2x + 3)^8}.


Final Answer:

dydx=77(x4)6(2x+3)8.\frac{dy}{dx} = \frac{77 (x - 4)^6}{(2x + 3)^8}.

Would you like further steps or additional examples to clarify?


Here are some follow-up questions for practice:

  1. How does the chain rule apply to composite functions?
  2. How do you differentiate a function with a fractional exponent?
  3. Can you find the second derivative of the given function?
  4. What is the behavior of the derivative as xx \to \infty?
  5. Can you graph the original function and its derivative?

Tip: When differentiating functions with fractions, simplify each step to avoid errors in algebra.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Chain Rule
Quotient Rule

Formulas

Chain rule: (f(g(x)))' = f'(g(x)) * g'(x)
Quotient rule: (f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x)) / (g(x))^2

Theorems

Chain rule
Quotient rule

Suitable Grade Level

Undergraduate Calculus (or Advanced High School Calculus)