Math Problem Statement

FIND THE DERIVATIVE OF Y WITH RESPECT TO X. (π‘₯2 βˆ’π‘¦2)3 = 3π‘Ž^4π‘₯2 USE THE GIVEN RELATION IN IMPLICIT FORM.

Solution

To find the derivative of yy with respect to xx from the given equation

(x2βˆ’y2)3=3a4x2,(x^2 - y^2)^3 = 3a^4x^2,

we'll use implicit differentiation. Here are the steps:

Step 1: Differentiate both sides with respect to xx

We'll apply the chain rule on the left-hand side and differentiate each term on the right-hand side.

For the left-hand side: ddx((x2βˆ’y2)3)\frac{d}{dx} \left( (x^2 - y^2)^3 \right) Using the chain rule, we differentiate the outer function (power of 3) and then the inner function:

3(x2βˆ’y2)2β‹…ddx(x2βˆ’y2)3(x^2 - y^2)^2 \cdot \frac{d}{dx} (x^2 - y^2)

Now, differentiate (x2βˆ’y2)(x^2 - y^2) using the chain rule:

ddx(x2βˆ’y2)=2xβˆ’2yβ‹…dydx\frac{d}{dx}(x^2 - y^2) = 2x - 2y \cdot \frac{dy}{dx}

So, the derivative of the left-hand side becomes:

3(x2βˆ’y2)2β‹…(2xβˆ’2yβ‹…dydx)3(x^2 - y^2)^2 \cdot (2x - 2y \cdot \frac{dy}{dx})

For the right-hand side:

ddx(3a4x2)=6a4x\frac{d}{dx} (3a^4 x^2) = 6a^4 x

Step 2: Combine the results

The equation now becomes:

3(x2βˆ’y2)2β‹…(2xβˆ’2yβ‹…dydx)=6a4x3(x^2 - y^2)^2 \cdot (2x - 2y \cdot \frac{dy}{dx}) = 6a^4 x

Step 3: Solve for dydx\frac{dy}{dx}

Expand both sides:

6(x2βˆ’y2)2β‹…xβˆ’6(x2βˆ’y2)2β‹…yβ‹…dydx=6a4x6(x^2 - y^2)^2 \cdot x - 6(x^2 - y^2)^2 \cdot y \cdot \frac{dy}{dx} = 6a^4 x

Now, collect all terms involving dydx\frac{dy}{dx} on one side:

βˆ’6(x2βˆ’y2)2β‹…yβ‹…dydx=6a4xβˆ’6(x2βˆ’y2)2β‹…x-6(x^2 - y^2)^2 \cdot y \cdot \frac{dy}{dx} = 6a^4 x - 6(x^2 - y^2)^2 \cdot x

Factor out the constants:

βˆ’6y(x2βˆ’y2)2β‹…dydx=6x(a4βˆ’(x2βˆ’y2)2)-6y(x^2 - y^2)^2 \cdot \frac{dy}{dx} = 6x \left( a^4 - (x^2 - y^2)^2 \right)

Finally, solve for dydx\frac{dy}{dx}:

dydx=βˆ’6x(a4βˆ’(x2βˆ’y2)2)6y(x2βˆ’y2)2\frac{dy}{dx} = \frac{-6x \left( a^4 - (x^2 - y^2)^2 \right)}{6y(x^2 - y^2)^2}

Simplify:

dydx=βˆ’x(a4βˆ’(x2βˆ’y2)2)y(x2βˆ’y2)2\frac{dy}{dx} = \frac{-x \left( a^4 - (x^2 - y^2)^2 \right)}{y(x^2 - y^2)^2}

Final Answer:

dydx=βˆ’x(a4βˆ’(x2βˆ’y2)2)y(x2βˆ’y2)2\frac{dy}{dx} = \frac{-x \left( a^4 - (x^2 - y^2)^2 \right)}{y(x^2 - y^2)^2}

Would you like further details on any of the steps or have additional questions about implicit differentiation?

Related Questions:

  1. What is the chain rule in differentiation?
  2. Can you differentiate an implicit function without solving for yy explicitly?
  3. How do we apply implicit differentiation to trigonometric functions?
  4. What is the product rule and how can it be used in implicit differentiation?
  5. How do you interpret the derivative dydx\frac{dy}{dx} geometrically?

Tip:

Always remember to treat yy as a function of xx when differentiating implicitly. The derivative of yy with respect to xx will include dydx\frac{dy}{dx}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Implicit Differentiation
Chain Rule
Derivative of Composite Functions

Formulas

Implicit Differentiation: d/dx of (f(x, y)) = f'(x) + f'(y) * dy/dx
Chain Rule: d/dx of f(g(x)) = f'(g(x)) * g'(x)

Theorems

Chain Rule
Implicit Function Theorem

Suitable Grade Level

Grades 11-12