Math Problem Statement

what's the domain and range

What's the domain and range of the function in the graph?

Solution

The graph shown appears to represent a trigonometric function, possibly a cosine function, since it exhibits a wave-like pattern with symmetry about the origin. Here's the interpretation based on the image:

  • Domain: The domain of the function in this graph covers the horizontal extent. The graph spans from π-\pi to π\pi. Thus, the domain is: [π,π][-\pi, \pi]

  • Range: The range is determined by the vertical extent of the graph. The maximum value reached by the curve is 1, and the minimum value is -1. Therefore, the range is: [1,1][-1, 1]

This graph resembles the cosine function y=cos(x)y = \cos(x), which has this behavior in the interval [π,π][-\pi, \pi].

Would you like further details on how these values are determined?

5 Relative Questions:

  1. What is the significance of the periodicity in trigonometric functions like cosine?
  2. How do we determine the amplitude of trigonometric functions from a graph?
  3. What are the key differences between the cosine and sine functions in terms of their graphs?
  4. Can the domain of trigonometric functions like cosine extend to infinity?
  5. How does the phase shift affect the cosine graph?

Tip:

Always check for symmetry in trigonometric function graphs to identify key characteristics like amplitude, period, and phase shift more easily.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Cosine Function
Domain
Range

Formulas

y = cos(x)
Domain: [-π, π]
Range: [-1, 1]

Theorems

Properties of Trigonometric Functions
Cosine Function Symmetry

Suitable Grade Level

Grades 9-12