Math Problem Statement

explain: Show that a function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2)f(\lambda x_1 + (1-\lambda) x_2) \le \lambda f(x_1) + (1-\lambda) f(x_2) for any $x_1, x_2 \in \mathbb{R}^n$ and $\lambda \in [0,1]$.

Hint: We need to show two parts. First, we show the "if" part: If the functions satisifies f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2)f(\lambda x_1 + (1-\lambda) x_2) \le \lambda f(x_1) + (1-\lambda) f(x_2) for any $x_1, x_2 \in \mathbb{R}^n$ and $\lambda \in [0,1]$, then $f$ is convex, i.e., the set ${(x, t) \in \mathbb{R}^{n+1} : f(x) \le t}$ is convex.

Second, we show the "only if" part: If the function $f$ is convex, i.e., the set ${(x, t) \in \mathbb{R}^{n+1} : f(x) \le t}$ is convex, then it must satisify f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2)f(\lambda x_1 + (1-\lambda) x_2) \le \lambda f(x_1) + (1-\lambda) f(x_2) for any $x_1, x_2 \in \mathbb{R}^n$ and $\lambda \in [0,1]$

Solution (a) "If" Part

Assume that for every $x_1,x_2\in \mathbb{R}^n$ and $\lambda\in [0,1]$ we have f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2).f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda) f(x_2).

Let S={(x,t)Rn+1:f(x)t}.S = \{(x,t)\in \mathbb{R}^{n+1}: f(x)\le t\}. Take any two points $(x_1,t_1)$ and $(x_2,t_2)$ in $S$ so that f(x1)t1andf(x2)t2.f(x_1)\le t_1 \quad \text{and} \quad f(x_2)\le t_2.

For any $\lambda\in [0,1]$, define x=λx1+(1λ)x2andt=λt1+(1λ)t2.x = \lambda x_1 + (1-\lambda)x_2 \quad \text{and} \quad t = \lambda t_1 + (1-\lambda)t_2.

Then, by our assumption, f(x)=f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2)λt1+(1λ)t2=t.f(x) = f(\lambda x_1+(1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda) f(x_2) \le \lambda t_1 + (1-\lambda)t_2 = t.

Thus, $(x,t)\in S$, proving that the epigraph is convex. Hence, $f$ is convex.

(b) "Only If" Part

Now, suppose that $f$ is convex, meaning the set S={(x,t)Rn+1:f(x)t}S= \{(x,t)\in \mathbb{R}^{n+1}: f(x)\le t\} is convex.

Let $x_1,x_2\in\mathbb{R}^n$ and set $t_1=f(x_1)$ and $t_2=f(x_2)$ so that $(x_1,t_1)$ and $(x_2,t_2)$ lie in $S$.

For any $\lambda\in[0,1]$, the convexity of the set $S$ implies that (λx1+(1λ)x2,λt1+(1λ)t2)S.\big(\lambda x_1+(1-\lambda)x_2,\, \lambda t_1+(1-\lambda)t_2\big) \in S.

That is, f(λx1+(1λ)x2)λt1+(1λ)t2=λf(x1)+(1λ)f(x2).f(\lambda x_1+(1-\lambda)x_2) \le \lambda t_1+(1-\lambda)t_2 = \lambda f(x_1)+(1-\lambda)f(x_2).

Solution

We are tasked with proving the equivalence between a function being convex and satisfying the inequality

f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2)f(\lambda x_1 + (1 - \lambda) x_2) \le \lambda f(x_1) + (1 - \lambda) f(x_2)

for all x1,x2Rnx_1, x_2 \in \mathbb{R}^n and λ[0,1]\lambda \in [0, 1]. To do this, we need to prove both directions of the implication:

(a) "If" Part:

Assume that the inequality

f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2)f(\lambda x_1 + (1 - \lambda) x_2) \le \lambda f(x_1) + (1 - \lambda) f(x_2)

holds for all x1,x2Rnx_1, x_2 \in \mathbb{R}^n and λ[0,1]\lambda \in [0, 1]. We need to show that ff is convex, meaning the epigraph of ff, the set S={(x,t)Rn+1:f(x)t}S = \{ (x, t) \in \mathbb{R}^{n+1} : f(x) \le t \}, is convex.

Proof:

  1. Take any two points (x1,t1)(x_1, t_1) and (x2,t2)(x_2, t_2) in the epigraph SS, so that: f(x1)t1andf(x2)t2.f(x_1) \le t_1 \quad \text{and} \quad f(x_2) \le t_2.

  2. For any λ[0,1]\lambda \in [0, 1], define the point x=λx1+(1λ)x2x = \lambda x_1 + (1 - \lambda) x_2 and t=λt1+(1λ)t2t = \lambda t_1 + (1 - \lambda) t_2.

  3. By our assumption, we know that: f(x)=f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2).f(x) = f(\lambda x_1 + (1 - \lambda) x_2) \le \lambda f(x_1) + (1 - \lambda) f(x_2).

  4. Since f(x1)t1f(x_1) \le t_1 and f(x2)t2f(x_2) \le t_2, we have: f(x)λt1+(1λ)t2=t.f(x) \le \lambda t_1 + (1 - \lambda) t_2 = t.

  5. Therefore, the point (x,t)(x, t) lies in the epigraph SS, i.e., (x,t)S(x, t) \in S.

  6. This shows that the epigraph is convex, and by definition, this implies that ff is convex.

(b) "Only If" Part:

Now assume that ff is convex, meaning the epigraph S={(x,t)Rn+1:f(x)t}S = \{ (x, t) \in \mathbb{R}^{n+1} : f(x) \le t \} is convex. We need to show that ff satisfies the inequality:

f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2)f(\lambda x_1 + (1 - \lambda) x_2) \le \lambda f(x_1) + (1 - \lambda) f(x_2)

for all x1,x2Rnx_1, x_2 \in \mathbb{R}^n and λ[0,1]\lambda \in [0, 1].

Proof:

  1. Let x1,x2Rnx_1, x_2 \in \mathbb{R}^n, and set t1=f(x1)t_1 = f(x_1) and t2=f(x2)t_2 = f(x_2). Thus, the points (x1,t1)(x_1, t_1) and (x2,t2)(x_2, t_2) lie in the epigraph SS, i.e., f(x1)t1f(x_1) \le t_1 and f(x2)t2f(x_2) \le t_2.

  2. Since SS is convex, the point (λx1+(1λ)x2,λt1+(1λ)t2)(\lambda x_1 + (1 - \lambda) x_2, \lambda t_1 + (1 - \lambda) t_2) must also lie in SS. This means: f(λx1+(1λ)x2)λt1+(1λ)t2.f(\lambda x_1 + (1 - \lambda) x_2) \le \lambda t_1 + (1 - \lambda) t_2.

  3. Since t1=f(x1)t_1 = f(x_1) and t2=f(x2)t_2 = f(x_2), we have: f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2).f(\lambda x_1 + (1 - \lambda) x_2) \le \lambda f(x_1) + (1 - \lambda) f(x_2).

Thus, the inequality is satisfied, completing the proof.

Conclusion:

We have shown both directions of the equivalence:

  • If the inequality holds, ff is convex.
  • If ff is convex, the inequality holds.

Therefore, the function ff is convex if and only if

f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2)f(\lambda x_1 + (1 - \lambda) x_2) \le \lambda f(x_1) + (1 - \lambda) f(x_2)

for any x1,x2Rnx_1, x_2 \in \mathbb{R}^n and λ[0,1]\lambda \in [0, 1].


Would you like further clarifications or have any specific questions on this proof?

Here are some related questions you might find interesting:

  1. What is the definition of a convex function in terms of its second derivative?
  2. Can a function be convex if it is not differentiable? If so, give an example.
  3. What are the conditions under which a function is concave?
  4. How does the concept of convexity relate to optimization problems?
  5. What is the role of convexity in machine learning, especially in loss functions?

Tip: Remember that convexity is crucial in optimization because any local minimum of a convex function is also a global minimum, making it easier to find optimal solutions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Convexity
Inequalities
Epigraph of a function

Formulas

$$ f(\lambda x_1 + (1 - \lambda) x_2) \le \lambda f(x_1) + (1 - \lambda) f(x_2) $$
$$ S = \{(x,t) \in \mathbb{R}^{n+1} : f(x) \le t\} $$

Theorems

Convexity of a function
Epigraph characterization of convexity

Suitable Grade Level

Grades 11-12