Math Problem Statement

Find the rectangular coordinates of (5, 30°).

Solution

To solve the given problem, we need to convert the polar coordinates (r,θ)(r, \theta) into rectangular coordinates (x,y)(x, y) using the formulas:

x=rcosθ,y=rsinθx = r \cos \theta, \quad y = r \sin \theta

Given:

r=5,θ=30r = 5, \quad \theta = 30^\circ

Step 1: Compute xx:

x=rcosθ=5cos30x = r \cos \theta = 5 \cos 30^\circ

Using the trigonometric value: cos30=32\cos 30^\circ = \frac{\sqrt{3}}{2}, so: x=532=532x = 5 \cdot \frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{2}

Step 2: Compute yy:

y=rsinθ=5sin30y = r \sin \theta = 5 \sin 30^\circ

Using the trigonometric value: sin30=12\sin 30^\circ = \frac{1}{2}, so: y=512=52y = 5 \cdot \frac{1}{2} = \frac{5}{2}

Final Rectangular Coordinates:

(532,52)\left(\frac{5\sqrt{3}}{2}, \frac{5}{2}\right)

Match with Answer Choices:

The correct answer is: (532,52)\boxed{\left(\frac{5\sqrt{3}}{2}, \frac{5}{2}\right)}

Let me know if you would like further details or explanations!


Related Questions:

  1. What are polar coordinates, and how do they relate to rectangular coordinates?
  2. What are the sine and cosine values for standard angles like 30,45,6030^\circ, 45^\circ, 60^\circ?
  3. How do you find the angle θ\theta in polar coordinates given rectangular coordinates?
  4. Can this process be applied for negative values of rr?
  5. How would the solution change if θ\theta were given in radians instead of degrees?

Tip:

Always memorize the sine and cosine values for common angles like 0,30,45,60,0^\circ, 30^\circ, 45^\circ, 60^\circ, and 9090^\circ. It makes conversions much quicker!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polar to Rectangular Conversion
Trigonometry
Coordinate Geometry

Formulas

x = r * cos(θ)
y = r * sin(θ)

Theorems

Sine and Cosine Trigonometric Ratios

Suitable Grade Level

Grades 9-12