Math Problem Statement

Convert the following propositional formula into conjunctive normal form (CNF):

(P ∨ (Q ∧ R)) → (¬P ∧ ¬Q)

Solution

To convert the propositional formula (P(QR))(¬P¬Q)(P \lor (Q \land R)) \rightarrow (\neg P \land \neg Q) into conjunctive normal form (CNF), we follow a step-by-step approach.

Step 1: Rewriting the implication

The implication ABA \rightarrow B can be rewritten as ¬AB\neg A \lor B. So, we rewrite the formula as:

¬(P(QR))(¬P¬Q)\neg (P \lor (Q \land R)) \lor (\neg P \land \neg Q)

Step 2: De Morgan's Law on the negation

Apply De Morgan's Law to the negation ¬(P(QR))\neg (P \lor (Q \land R)):

(¬P¬(QR))(¬P¬Q)(\neg P \land \neg (Q \land R)) \lor (\neg P \land \neg Q)

Step 3: Simplifying the second negation

Using De Morgan's Law again for ¬(QR)\neg (Q \land R), we get:

(¬P(¬Q¬R))(¬P¬Q)(\neg P \land (\neg Q \lor \neg R)) \lor (\neg P \land \neg Q)

Step 4: Distribute the conjunction over the disjunction

Now, distribute the conjunction (¬P(¬Q¬R))(\neg P \land (\neg Q \lor \neg R)) over \lor, applying the distributive property:

(¬P(¬P¬Q))(¬P(¬P¬R))(¬P¬Q)(\neg P \lor (\neg P \land \neg Q)) \land (\neg P \lor (\neg P \land \neg R)) \lor (\neg P \land \neg Q)

Now the expression can be simplified. Let's take the simplest CNF form for the formula:

Final Answer:

The CNF equivalent of the propositional formula is:

[ (\neg P \lor \neg

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Propositional Logic
Conjunctive Normal Form (CNF)
De Morgan's Laws
Implication in Logic

Formulas

A → B = ¬A ∨ B
¬(A ∧ B) = ¬A ∨ ¬B
¬(A ∨ B) = ¬A ∧ ¬B

Theorems

Implication Law
De Morgan's Laws
Distributive Property in Logic

Suitable Grade Level

Undergraduate or Advanced High School