Math Problem Statement
Let's solve for π π β£ π
0 , π
1 ( 0 ) f Xβ£Y=0,Z=1 β (0) step by step using the information provided.
Step 1: Bayes' Theorem for Conditional Probability We want to find:
π π β£ π
0 , π
1 ( 0 )
π π π π ( 0 , 0 , 1 ) π π π ( 0 , 1 ) . f Xβ£Y=0,Z=1 β (0)= f YZ β (0,1) f XYZ β (0,0,1) β . Step 2: Marginalization to Find π π π ( 0 , 1 ) f YZ β (0,1) To compute π π π ( 0 , 1 ) f YZ β (0,1), we marginalize over π X:
π π π ( 0 , 1 )
π π π π ( 0 , 0 , 1 ) + π π π π ( 1 , 0 , 1 ) . f YZ β (0,1)=f XYZ β (0,0,1)+f XYZ β (1,0,1). We already know:
π π π π ( 0 , 0 , 1 )
1 4 f XYZ β (0,0,1)= 4 1 β . However, we don't have π π π π ( 1 , 0 , 1 ) f XYZ β (1,0,1) directly, but let's compute it based on the Bernoulli distributions.
Step 3: Use of Bernoulli Distributions π βΌ Bernoulli ( 1 / 3 ) XβΌBernoulli(1/3), so π ( π
1 )
1 3 P(X=1)= 3 1 β and π ( π
0 )
2 3 P(X=0)= 3 2 β . π βΌ Bernoulli ( 1 / 2 ) YβΌBernoulli(1/2), so π ( π
0 )
1 2 P(Y=0)= 2 1 β . π βΌ Bernoulli ( 2 / 3 ) ZβΌBernoulli(2/3), so π ( π
1 )
2 3 P(Z=1)= 3 2 β . Step 4: Compute π π π ( 0 , 1 ) f YZ β (0,1) Now, from the marginalization formula:
π π π ( 0 , 1 )
π π π π ( 0 , 0 , 1 ) + π π π π ( 1 , 0 , 1 ) . f YZ β (0,1)=f XYZ β (0,0,1)+f XYZ β (1,0,1). Assume the conditional probabilities follow the Bernoulli distributions, which means:
π π π π ( 1 , 0 , 1 )
π ( π
1 ) β π ( π
0 ) β π ( π
1 )
1 3 β 1 2 β 2 3
1 9 . f XYZ β (1,0,1)=P(X=1)β P(Y=0)β P(Z=1)= 3 1 β β 2 1 β β 3 2 β
9 1 β . Thus, we now have:
π π π ( 0 , 1 )
1 4 + 1 9
9 + 4 36
13 36 . f YZ β (0,1)= 4 1 β + 9 1 β
36 9+4 β
36 13 β . Step 5: Calculate π π β£ π
0 , π
1 ( 0 ) f Xβ£Y=0,Z=1 β (0) Now, we can substitute this into the formula for π π β£ π
0 , π
1 ( 0 ) f Xβ£Y=0,Z=1 β (0):
π π β£ π
0 , π
1 ( 0 )
1 4 13 36
1 4 β 36 13
9 13 . f Xβ£Y=0,Z=1 β (0)= 36 13 β
4 1 β
β
4 1 β β 13 36 β
13 9 β . Final Answer: The value of π π β£ π
0 , π
1 ( 0 ) f Xβ£Y=0,Z=1 β (0) is approximately:
0.69 . 0.69 β .answer is 0.75
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Conditional Probability
Marginalization
Bayes' Theorem
Bernoulli Distributions
Formulas
f_{X \mid Y = 0, Z = 1}(0) = f_{XYZ}(0, 0, 1) / f_{YZ}(0, 1)
f_{YZ}(0, 1) = f_{XYZ}(0, 0, 1) + f_{XYZ}(1, 0, 1)
f_{XYZ}(x, y, z) = P(X = x) * P(Y = y) * P(Z = z)
Theorems
Bayes' Theorem
Law of Total Probability
Suitable Grade Level
University Level - Probability and Statistics