Math Problem Statement

When expanded as a decimal, the fraction $\frac{1}{977}$ has a repetend (the repeating part of the decimal) that begins right after the decimal point, and is $976$ digits long. If the last three digits of the repetend are $ABC$, compute the digits $A$, $B$, and $C$.

Solution

To solve for the last three digits of the repetend of 1977\frac{1}{977}, we need to determine the digits AA, BB, and CC from the repeating decimal expansion.

First, we recognize that the decimal expansion of 1977\frac{1}{977} is a repeating decimal with a period of 976 digits. This implies that: 1977=0.d1d2d976\frac{1}{977} = 0.\overline{d_1 d_2 \ldots d_{976}}

We want to find the last three digits d974d_{974}, d975d_{975}, and d976d_{976}. Since the decimal is repeating, these digits are also the last three digits of the repetend.

To find these, we use the fact that: 1977=A10n1for some integer A and n=976\frac{1}{977} = \frac{A}{10^n - 1} \quad \text{for some integer } A \text{ and } n = 976

Given that: 0.d1d2d976=19770.\overline{d_1 d_2 \ldots d_{976}} = \frac{1}{977}

we can write the repetend as: d1d2d976d_1 d_2 \ldots d_{976}

This periodicity implies: 109761(mod977)10^{976} \equiv 1 \pmod{977}

Now, using modular arithmetic, we need to calculate the multiplicative inverse of 1010 modulo 977977, because the sequence of digits d1,d2,d_1, d_2, \ldots is derived from powers of 10 reduced modulo 977.

We find 10975(mod977)10^{975} \pmod{977} since we are interested in the last three digits: 10975×101(mod977)    10975101(mod977)10^{975} \times 10 \equiv 1 \pmod{977} \implies 10^{975} \equiv 10^{-1} \pmod{977}

Next, we need the modular inverse of 1010 modulo 977977. We solve for xx in: 10x1(mod977)10x \equiv 1 \pmod{977}

Using the Extended Euclidean Algorithm, we find:

977 &= 97 \times 10 + 7, \\ 10 &= 1 \times 7 + 3, \\ 7 &= 2 \times 3 + 1, \\ 3 &= 3 \times 1 + 0. \end{aligned}$$ Working back up: $$\begin{aligned} 1 &= 7 - 2 \times 3, \\ 3 &= 10 - 1 \times 7 \implies 1 = 7 - 2 \times (10 - 1 \times 7) = 3 \times 7 - 2 \times 10, \\ 7 &= 977 - 97 \times 10 \implies 1 = 3 \times (977 - 97 \times 10) - 2 \times 10 \implies 1 = 3 \times 977 - 293 \times 10. \end{aligned}$$ Thus: $$-293 \times 10 \equiv 1 \pmod{977} \implies 10^{-1} \equiv 684 \pmod{977}.$$ Hence: $$10^{975} \equiv 684 \pmod{977}$$ Now we find the last three digits by considering: $$10^{974} \cdot 684 \pmod{977} \equiv 1 \pmod{977}$$ Thus, the last three digits of the repetend of $$\frac{1}{977}$$ are $$A = 6$$, $$B = 8$$, and $$C = 4$$. Therefore, $$A = 6$$, $$B = 8$$, and $$C = 4$$.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Number Theory
Modular Arithmetic
Repeating Decimals

Formulas

Modular Inverse Formula

Theorems

Extended Euclidean Algorithm

Suitable Grade Level

Advanced High School