Math Problem Statement

et z_1 =(-i)/(-1+i),z_2=1+i/(1-i) and z_3=1/10[2(i-1)i+(-i+sqrt3)^3]+(1-i)bar((1-i))]

express /bar(z_1z_2)/z_3,z_1barz_2/z3 and barz_1/barz_3z_2 in both polar and standard forms

Solution

Let's start by calculating the values of z1z_1, z2z_2, and z3z_3, and then proceed to find the required expressions in both polar and standard forms.

Step 1: Calculate z1z_1, z2z_2, and z3z_3

For z1=i1+iz_1 = \frac{-i}{-1 + i}:

Simplify z1z_1 by multiplying the numerator and denominator by the conjugate of the denominator:

z1=i1+i1i1i=i(1i)(1)2(i)2=ii21+1=i+12=1i2z_1 = \frac{-i}{-1 + i} \cdot \frac{-1 - i}{-1 - i} = \frac{i(-1 - i)}{(-1)^2 - (i)^2} = \frac{-i - i^2}{1 + 1} = \frac{-i + 1}{2} = \frac{1 - i}{2}

For z2=1+i1iz_2 = \frac{1 + i}{1 - i}:

Simplify z2z_2 similarly by multiplying the numerator and denominator by the conjugate of the denominator:

z2=1+i1i1+i1+i=(1+i)212i2=1+2i+i21+1=1+2i12=iz_2 = \frac{1 + i}{1 - i} \cdot \frac{1 + i}{1 + i} = \frac{(1 + i)^2}{1^2 - i^2} = \frac{1 + 2i + i^2}{1 + 1} = \frac{1 + 2i - 1}{2} = i

For z3=110[2(i1)i+(i+3)3]+(1i)(1i)z_3 = \frac{1}{10} \left[ 2(i - 1)i + (-i + \sqrt{3})^3 \right] + (1 - i)\overline{(1 - i)}:

Simplify step by step:

  1. Calculate (1i)(1i)(1 - i)\overline{(1 - i)}:

(1i)(1i)=(1i)(1+i)=12i2=1+1=2(1 - i)\overline{(1 - i)} = (1 - i)(1 + i) = 1^2 - i^2 = 1 + 1 = 2

  1. Calculate 2(i1)i2(i - 1)i:

2(i1)i=2(i2i)=2(1i)=22i2(i - 1)i = 2(i^2 - i) = 2(-1 - i) = -2 - 2i

  1. Calculate (i+3)3(-i + \sqrt{3})^3:

First expand (i+3)3(-i + \sqrt{3})^3:

[ (-

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Polar Form
Standard Form
Algebraic Manipulation

Formulas

Conjugate of a Complex Number: z̅ = a - bi if z = a + bi
Multiplication and Division of Complex Numbers
Polar Form: z = r(cos θ + i sin θ) or z = re^(iθ)

Theorems

Properties of Complex Numbers
Euler's Formula

Suitable Grade Level

Grades 11-12 or Undergraduate