Math Problem Statement

Dalam satu tahun tertentu, sales A mencapai target penjualan 69 juta rupiah dan sales B mencapai target 75 juta rupiah. Sedangkan rata-rata penjualan sales A 75 juta rupiah, sales B 106 juta rupiah. Jika simpanan standar untuk sales A 8 juta rupiah dan simpanan standar untuk sales B 12 juta rupiah, siapakah yang paling unggul di antara kedua sales tersebut?

Solution

The text in the image appears to be a mathematical problem involving sales of two products or series, "Sales A" and "Sales B". Below is the transcription and interpretation of the problem:


Transcription:

  1. Dalam satu tahun tertentu, sales A mencapai target penjualan 69 juta rupiah dan sales B mencapai target 75 juta rupiah.
  2. Sedangkan rata-rata penjualan sales A 75 juta rupiah, sales B 106 juta rupiah.
  3. Jika simpanan standar untuk sales A 8 juta rupiah dan simpanan standar untuk sales B 12 juta rupiah, siapakah yang paling unggul di antara kedua sales tersebut?

Interpretation of the Problem:

  1. Sales Targets:

    • Sales A reached a total sales target of 69 million IDR (Indonesian Rupiah).
    • Sales B reached a total sales target of 75 million IDR.
  2. Average Sales:

    • The average sales for Sales A is 75 million IDR.
    • The average sales for Sales B is 106 million IDR.
  3. Standard Deviations (Simpanan Standar):

    • Sales A has a standard deviation of 8 million IDR.
    • Sales B has a standard deviation of 12 million IDR.
  4. Question:
    Which of the two sales teams, A or B, is performing better?


This looks like a statistics-related question, possibly involving a comparison of actual performance to average performance using the standard deviation to measure consistency. To properly determine who is better, we can calculate the Z-score for both sales performances and compare them.

Would you like to go ahead with that calculation?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Sales Comparison
Standard Deviation
Z-Score

Formulas

Z = (X - μ) / σ where X = actual value, μ = mean (average), and σ = standard deviation

Theorems

Z-Score Theorem: A measure of how many standard deviations an element is from the mean

Suitable Grade Level

Grades 10-12