Math Problem Statement

Find the coefficient of x^2 in the expansion of (1 + x^2) ((x/2) - (4/x))^6.

Solution

We are tasked with finding the coefficient of x2x^2 in the expansion of the expression:

(1+x2)(x24x)6(1 + x^2) \left( \frac{x}{2} - \frac{4}{x} \right)^6

Step 1: Expand (x24x)6\left( \frac{x}{2} - \frac{4}{x} \right)^6

We recognize that this is a binomial expansion problem. The binomial theorem states that for (a+b)n(a + b)^n:

(a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k

In this case, let:

  • a=x2a = \frac{x}{2}
  • b=4xb = -\frac{4}{x}
  • n=6n = 6

So, we expand (x24x)6\left( \frac{x}{2} - \frac{4}{x} \right)^6 using the binomial theorem:

(x24x)6=k=06(6k)(x2)6k(4x)k\left( \frac{x}{2} - \frac{4}{x} \right)^6 = \sum_{k=0}^{6} \binom{6}{k} \left( \frac{x}{2} \right)^{6-k} \left( -\frac{4}{x} \right)^k

Let's simplify a few terms: (x2)6k=x6k26k\left( \frac{x}{2} \right)^{6-k} = \frac{x^{6-k}}{2^{6-k}} (4x)k=(1)k4kxk\left( -\frac{4}{x} \right)^k = (-1)^k \frac{4^k}{x^k}

Thus, each term of the expansion is:

(6k)x6k26k(1)k4kxk=(6k)(1)k4k26kx62k\binom{6}{k} \cdot \frac{x^{6-k}}{2^{6-k}} \cdot (-1)^k \cdot \frac{4^k}{x^k} = \binom{6}{k} \cdot (-1)^k \cdot \frac{4^k}{2^{6-k}} \cdot x^{6-2k}

So the general term of the expansion is:

(6k)(1)k4k26kx62k\binom{6}{k} \cdot (-1)^k \cdot \frac{4^k}{2^{6-k}} \cdot x^{6-2k}

Step 2: Multiply by 1+x21 + x^2

Next, we need to multiply this expansion by 1+x21 + x^2. For each term of the form x62kx^{6-2k}, multiplying by 1+x21 + x^2 gives:

x62k(1+x2)=x62k+x82kx^{6-2k} \cdot (1 + x^2) = x^{6-2k} + x^{8-2k}

Step 3: Identify the term with x2x^2

We now need to find the values of kk that will result in a term with x2x^2.

For the first product, x62kx^{6-2k}, we set 62k=26-2k = 2, giving:

62k=22k=4k=26 - 2k = 2 \quad \Rightarrow \quad 2k = 4 \quad \Rightarrow \quad k = 2

For the second product, x82kx^{8-2k}, we set 82k=28-2k = 2, giving:

82k=22k=6k=38 - 2k = 2 \quad \Rightarrow \quad 2k = 6 \quad \Rightarrow \quad k = 3

Step 4: Calculate the coefficients

We now compute the coefficients for k=2k = 2 and k=3k = 3:

  • For k=2k = 2:

(62)(1)242262=(62)11624=151616=15\binom{6}{2} \cdot (-1)^2 \cdot \frac{4^2}{2^{6-2}} = \binom{6}{2} \cdot 1 \cdot \frac{16}{2^4} = 15 \cdot \frac{16}{16} = 15

  • For k=3k = 3:

(63)(1)343263=(63)(1)6423=20(1)648=208=160\binom{6}{3} \cdot (-1)^3 \cdot \frac{4^3}{2^{6-3}} = \binom{6}{3} \cdot (-1) \cdot \frac{64}{2^3} = 20 \cdot (-1) \cdot \frac{64}{8} = -20 \cdot 8 = -160

Step 5: Combine the contributions

The total coefficient of x2x^2 is the sum of the contributions from k=2k = 2 and k=3k = 3:

Total coefficient=15+(160)=145\text{Total coefficient} = 15 + (-160) = -145

Final Answer:

The coefficient of x2x^2 in the expansion is 145\boxed{-145}.

Do you need further details or clarification?


Here are 5 related questions to expand on this concept:

  1. How does the binomial theorem apply to negative exponents?
  2. What would be the coefficient of x4x^4 in this expansion?
  3. How can we use binomial expansions in calculus problems, like integration?
  4. What is the general formula for binomial expansion with fractional powers?
  5. How would the approach change if the exponent were larger than 6?

Tip: When dealing with binomial expansions, always simplify each term before multiplying by additional factors to avoid unnecessary complications.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Binomial Theorem
Polynomial Expansion

Formulas

Binomial expansion formula: (a + b)^n = ∑(n choose k) a^(n-k) b^k
General term of binomial expansion: T_k = (n choose k) a^(n-k) b^k

Theorems

Binomial Theorem

Suitable Grade Level

Advanced High School / Early College