Math Problem Statement
An arctic weather balloon is filled with 35.3 L of helium gas inside a prep shed. The temperature inside the shed is 13 degrees C. The balloon is then taken outside, where the temperature is -22 degrees C. Calculate the new volume of the balloon. You may assume the pressure on the balloon stays constant at exactly 1 atm. Be sure your answer has the correct number of significant digits.
Solution
To solve this problem, we can use Charles's Law, which states that the volume of a gas is directly proportional to its temperature (in Kelvin) when pressure is held constant. Charles's Law can be expressed as:
Where:
- is the initial volume of the gas,
- is the initial temperature in Kelvin,
- is the final volume of the gas,
- is the final temperature in Kelvin.
Given:
- ,
- ,
- .
We are tasked with finding , the new volume.
Rearrange Charles's Law to solve for :
Substitute the known values:
Now calculate:
Significant Figures:
Since the given volume (35.3 L) has 3 significant digits, the final answer should also be expressed with 3 significant digits.
Thus, the new volume of the balloon is approximately:
Would you like further details or have any questions about the calculation?
Here are 5 related questions to explore further:
- What is Boyle's Law and how does it differ from Charles's Law?
- How would the calculation change if the pressure were not constant?
- What are other real-life applications of Charles's Law?
- How do you convert Celsius to Kelvin in gas law problems?
- How would the volume change if the outside temperature dropped even further?
Tip: Always convert temperatures to Kelvin when dealing with gas law equations since the Kelvin scale starts at absolute zero, ensuring accuracy in proportionality calculations.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Gas Laws
Charles's Law
Temperature-Volume Relationship
Formulas
V1 / T1 = V2 / T2
Theorems
Charles's Law
Suitable Grade Level
Grades 10-12
Related Recommendation
Calculate New Volume of Balloon Cooled from 37°C to 14°C Using Charles's Law
Gas Volume Expansion Using Charles's Law: 16 ft³ at 60°F to 200°F
Charles's Law: Calculating the Volume of a Heated Balloon
Calculate Temperature for Balloon Expansion Using Charles's Law
Final Volume of Gas Heated from 60°F to 200°F Using Charles's Law