Math Problem Statement

1. Общий план исследования функций и построения их графиков. 2. Вычислить площадь треугольника с вершинами A(1;1;1), B(2;3;4), C(4;3;2). 3. Найти пределы, применяя правило Лопиталя: a) lim (e^x - 1) / sin(x), b) lim (e^x - e^-x) / (sin(x) * cos(x)) 4. Продифференцировать данные функции: a) y = ae^(-b x^2), b) y = cos(2x * ln(x)) 5. Найти полный дифференциал функций: a) z = (x + y) / (x - y), b) z = sin(xy)

Solution

The image you've uploaded contains several math problems. Let's go through them step by step.

  1. General Plan for Investigating Functions and Plotting Their Graphs.
  2. Calculate the Area of the Triangle with Vertices A(1;1;1), B(2;3;4), and C(4;3;2).
  3. Find Limits Using L'Hopital's Rule: a) limx0ex1sin(x)\lim_{x \to 0} \frac{e^x - 1}{\sin(x)} b) limx0exexsin(x)cos(x)\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin(x)\cos(x)}
  4. Differentiate the Given Functions: a) y=aebx2y = ae^{-b x^2} b) y=cos(2xln(x))y = \cos(2x \cdot \ln(x))
  5. Find the Total Differential of the Functions: a) z=x+yxyz = \frac{x + y}{x - y} b) z=sin(xy)z = \sin(xy)

Would you like to proceed with solving any of these problems? Please specify which one or if you'd like solutions for all.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
L'Hopital's Rule
Differentiation
Total Differentials
Geometry

Formulas

L'Hopital's Rule: lim f(x)/g(x) = lim f'(x)/g'(x) if limit exists
Area of triangle: A = 1/2 * |x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)|

Theorems

L'Hopital's Rule
Differentiation Rules
Total Differential Theorem

Suitable Grade Level

University-level mathematics