Math Problem Statement

Given lim(x→2) f(x) = 4, lim(x→2) g(x) = 3, and lim(x→2) h(x) = 0, calculate lim(x→2) [ (f(x)h(x) + g(x)h(x)) / g(x) ]

Solution

Given the information: limx2f(x)=4,limx2g(x)=3,andlimx2h(x)=0,\lim_{x \to 2} f(x) = 4, \quad \lim_{x \to 2} g(x) = 3, \quad \text{and} \quad \lim_{x \to 2} h(x) = 0, we need to find limx2(f(x)h(x)+g(x)h(x)g(x)).\lim_{x \to 2} \left( \frac{f(x)h(x) + g(x)h(x)}{g(x)} \right).

Step-by-Step Solution

  1. Simplify the Expression Inside the Limit: f(x)h(x)+g(x)h(x)g(x)=h(x)(f(x)+g(x))g(x).\frac{f(x)h(x) + g(x)h(x)}{g(x)} = \frac{h(x)(f(x) + g(x))}{g(x)}.

    This can be rewritten as: h(x)f(x)+g(x)g(x).h(x) \cdot \frac{f(x) + g(x)}{g(x)}.

  2. Apply Limit Laws: Since limx2h(x)=0\lim_{x \to 2} h(x) = 0, we have: limx2[h(x)f(x)+g(x)g(x)]=(limx2h(x))(limx2f(x)+g(x)g(x)).\lim_{x \to 2} \left[ h(x) \cdot \frac{f(x) + g(x)}{g(x)} \right] = \left( \lim_{x \to 2} h(x) \right) \cdot \left( \lim_{x \to 2} \frac{f(x) + g(x)}{g(x)} \right).

  3. Evaluate Each Limit Separately:

    • limx2h(x)=0\lim_{x \to 2} h(x) = 0.
    • limx2f(x)+g(x)g(x)=limx2(f(x)+g(x))limx2g(x)\lim_{x \to 2} \frac{f(x) + g(x)}{g(x)} = \frac{\lim_{x \to 2} (f(x) + g(x))}{\lim_{x \to 2} g(x)} since limx2g(x)0\lim_{x \to 2} g(x) \neq 0.
    • Evaluate limx2(f(x)+g(x))=limx2f(x)+limx2g(x)=4+3=7\lim_{x \to 2} (f(x) + g(x)) = \lim_{x \to 2} f(x) + \lim_{x \to 2} g(x) = 4 + 3 = 7.
    • Thus, limx2f(x)+g(x)g(x)=73\lim_{x \to 2} \frac{f(x) + g(x)}{g(x)} = \frac{7}{3}.
  4. Combine the Results: (limx2h(x))(limx2f(x)+g(x)g(x))=073=0.\left( \lim_{x \to 2} h(x) \right) \cdot \left( \lim_{x \to 2} \frac{f(x) + g(x)}{g(x)} \right) = 0 \cdot \frac{7}{3} = 0.

Final Answer:

The limit is 00. Therefore, the correct option is:

  • 0

Would you like further details or have any other questions?

Related Questions:

  1. What are the laws of limits used in this problem?
  2. How would the solution change if limx2h(x)\lim_{x \to 2} h(x) were not equal to zero?
  3. Why is it necessary to ensure limx2g(x)0\lim_{x \to 2} g(x) \neq 0 when applying limit division?
  4. Can limits be distributed over addition and multiplication?
  5. How do you handle indeterminate forms in limit problems?

Tip:

Always break down the limit into simpler parts and apply limit laws step-by-step to avoid confusion, especially when dealing with products and quotients.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Algebraic Simplification
Limit Laws

Formulas

lim(x→a) [f(x) + g(x)] = lim(x→a) f(x) + lim(x→a) g(x)
lim(x→a) [f(x)g(x)] = lim(x→a) f(x) * lim(x→a) g(x)
lim(x→a) [f(x)/g(x)] = lim(x→a) f(x) / lim(x→a) g(x) if g(a) ≠ 0

Theorems

Limit Laws

Suitable Grade Level

Grades 11-12