Math Problem Statement

Gegeben ist der Vektor a = (-1, 3, 2). Berechnen Sie die zugehörigen Richtungswinkel α, β, γ. Einheit: °. Die Angabe einer Nachkommastelle (gerundet) reicht aus.

Solution

The task in the image asks to compute the directional angles (Richtungswinkel) α\alpha, β\beta, and γ\gamma of the given vector:

a=(132)\vec{a} = \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}

The directional angles are the angles between the vector and the coordinate axes. These can be calculated using the formula:

cos(θi)=aia\cos(\theta_i) = \frac{a_i}{|\vec{a}|}

where θi\theta_i is the angle with the corresponding axis, aia_i is the ii-th component of the vector, and a|\vec{a}| is the magnitude (length) of the vector a\vec{a}.

Step 1: Calculate the magnitude of a\vec{a}

a=(1)2+32+22=1+9+4=14|\vec{a}| = \sqrt{(-1)^2 + 3^2 + 2^2} = \sqrt{1 + 9 + 4} = \sqrt{14}

Step 2: Compute the cosines of the angles

For the x-axis (α\alpha):

cos(α)=114α=cos1(114)\cos(\alpha) = \frac{-1}{\sqrt{14}} \quad \Rightarrow \quad \alpha = \cos^{-1}\left(\frac{-1}{\sqrt{14}}\right)

For the y-axis (β\beta):

cos(β)=314β=cos1(314)\cos(\beta) = \frac{3}{\sqrt{14}} \quad \Rightarrow \quad \beta = \cos^{-1}\left(\frac{3}{\sqrt{14}}\right)

For the z-axis (γ\gamma):

cos(γ)=214γ=cos1(214)\cos(\gamma) = \frac{2}{\sqrt{14}} \quad \Rightarrow \quad \gamma = \cos^{-1}\left(\frac{2}{\sqrt{14}}\right)

Step 3: Calculate the angles

Let's compute these values:

  1. α=cos1(114)cos1(0.2673)\alpha = \cos^{-1}\left(\frac{-1}{\sqrt{14}}\right) \approx \cos^{-1}(-0.2673)
  2. β=cos1(314)cos1(0.8018)\beta = \cos^{-1}\left(\frac{3}{\sqrt{14}}\right) \approx \cos^{-1}(0.8018)
  3. γ=cos1(214)cos1(0.5345)\gamma = \cos^{-1}\left(\frac{2}{\sqrt{14}}\right) \approx \cos^{-1}(0.5345)

Now, the approximate results in degrees:

  • α105.96\alpha \approx 105.96^\circ
  • β36.87\beta \approx 36.87^\circ
  • γ57.12\gamma \approx 57.12^\circ

These are the directional angles α\alpha, β\beta, and γ\gamma.


Would you like further details or have any questions about this process? Here are five related questions to deepen your understanding:

  1. What is the significance of directional angles in 3D vector analysis?
  2. How is the magnitude of a vector in 3D space computed?
  3. What are the key differences between directional cosines and directional angles?
  4. How would the directional angles change if the vector components were negative or zero?
  5. Can we calculate directional angles for a zero vector?

Tip: When calculating directional angles, ensure the vector is not a zero vector, as this would lead to undefined angles.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Geometry
Directional Angles
Cosine Function

Formulas

Magnitude of a vector: |a| = sqrt(a1^2 + a2^2 + a3^2)
Cosine of directional angles: cos(θi) = ai / |a|
Inverse cosine: θ = cos^-1(value)

Theorems

Pythagorean Theorem
Cosine of angles in 3D

Suitable Grade Level

Grade 12