Math Problem Statement

A graph of a the piecewise linear function 𝑓 (π‘₯) and table of the functions 𝑔(π‘₯) and 𝑔 β€² (π‘₯) are shown below. 1 (a) Given β„Ž(π‘₯) = 𝑓 (π‘₯) + 𝑔(π‘₯), find β„Ž β€² (1) (b) Given π‘˜(π‘₯) = 𝑓 (π‘₯)𝑔(π‘₯), find π‘˜ β€² (1). (c) Given 𝑙(π‘₯) = 𝑓 (π‘₯) 𝑔(π‘₯) , find 𝑙 β€² (3). (d) Given π‘š(π‘₯) = 𝑔(π‘₯) √ π‘₯ , find π‘šβ€² (4)

Solution

Problem Breakdown:

We are given several functions and their derivatives. The tasks require applying standard rules for differentiation, such as the sum rule, product rule, quotient rule, and chain rule. Let's break each part down.

(a) Given h(x)=f(x)+g(x)h(x) = f(x) + g(x), find hβ€²(1)h'(1)

Sum Rule: hβ€²(x)=fβ€²(x)+gβ€²(x)h'(x) = f'(x) + g'(x) Therefore, hβ€²(1)=fβ€²(1)+gβ€²(1)h'(1) = f'(1) + g'(1).

To calculate this, we need to know fβ€²(1)f'(1) and gβ€²(1)g'(1). According to the table or graph, extract the values of fβ€²(1)f'(1) from the piecewise function and gβ€²(1)g'(1) from the given table.


(b) Given k(x)=f(x)g(x)k(x) = f(x)g(x), find kβ€²(1)k'(1)

Product Rule: kβ€²(x)=fβ€²(x)g(x)+f(x)gβ€²(x)k'(x) = f'(x)g(x) + f(x)g'(x) So, kβ€²(1)=fβ€²(1)g(1)+f(1)gβ€²(1)k'(1) = f'(1)g(1) + f(1)g'(1).

Again, use the values of fβ€²(1),f(1),g(1),gβ€²(1)f'(1), f(1), g(1), g'(1) from the graph and table.


(c) Given l(x)=f(x)g(x)l(x) = \frac{f(x)}{g(x)}, find lβ€²(3)l'(3)

Quotient Rule: lβ€²(x)=fβ€²(x)g(x)βˆ’f(x)gβ€²(x)(g(x))2l'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} Thus, lβ€²(3)=fβ€²(3)g(3)βˆ’f(3)gβ€²(3)(g(3))2l'(3) = \frac{f'(3)g(3) - f(3)g'(3)}{(g(3))^2}.

Use the values of fβ€²(3),f(3),g(3),gβ€²(3)f'(3), f(3), g(3), g'(3) from the provided information.


(d) Given m(x)=g(x)xm(x) = \frac{g(x)}{\sqrt{x}}, find mβ€²(4)m'(4)

This is a quotient of g(x)g(x) and x\sqrt{x}, so we will apply the quotient rule with the chain rule for the square root function.

For x\sqrt{x}, the derivative is: ddx(x)=12x\frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}

Applying the quotient rule: mβ€²(x)=gβ€²(x)xβˆ’g(x)β‹…12xxm'(x) = \frac{g'(x)\sqrt{x} - g(x) \cdot \frac{1}{2\sqrt{x}}}{x} Substitute x=4x = 4: mβ€²(4)=gβ€²(4)4βˆ’g(4)β‹…1244m'(4) = \frac{g'(4)\sqrt{4} - g(4) \cdot \frac{1}{2\sqrt{4}}}{4}

Now, use the values of gβ€²(4)g'(4) and g(4)g(4).


Summary of Required Steps:

  1. Find the values of fβ€²(x),f(x),gβ€²(x),g(x)f'(x), f(x), g'(x), g(x) at x=1,3,4x = 1, 3, 4.
  2. Apply the sum, product, and quotient rules to each problem.
  3. Compute the derivatives.

Would you like to provide the table or graph for the function values, or proceed with further calculations?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Derivatives
Sum Rule
Product Rule
Quotient Rule
Chain Rule

Formulas

Sum Rule: h'(x) = f'(x) + g'(x)
Product Rule: k'(x) = f'(x)g(x) + f(x)g'(x)
Quotient Rule: l'(x) = (f'(x)g(x) - f(x)g'(x)) / (g(x))^2
Chain Rule: Derivative of sqrt(x) = 1 / (2√x)

Theorems

Sum Rule
Product Rule
Quotient Rule
Chain Rule

Suitable Grade Level

Grades 11-12 (Advanced Calculus)