Math Problem Statement

Find the volume of a solid bounded above by the function f(x,y) = 2x2 + 4y2 +1, below by the xy-plane, for 4 < x < 8 and -2 < y < 11. Leave your final answer correct to 2 decimal places.

Solution

To find the volume of the solid bounded above by the function f(x,y)=2x2+4y2+1f(x, y) = 2x^2 + 4y^2 + 1, and below by the xy-plane, over the region defined by 4<x<84 < x < 8 and 2<y<11-2 < y < 11, we can set up and evaluate the double integral:

V=y=211x=48f(x,y)dxdyV = \int_{y=-2}^{11} \int_{x=4}^{8} f(x, y) \, dx \, dy

This can be written explicitly as:

V=y=211x=48(2x2+4y2+1)dxdyV = \int_{y=-2}^{11} \int_{x=4}^{8} (2x^2 + 4y^2 + 1) \, dx \, dy

Step 1: Integrate with respect to xx

x=48(2x2+4y2+1)dx\int_{x=4}^{8} (2x^2 + 4y^2 + 1) \, dx

This integral can be split as:

x=482x2dx+x=484y2dx+x=481dx\int_{x=4}^{8} 2x^2 \, dx + \int_{x=4}^{8} 4y^2 \, dx + \int_{x=4}^{8} 1 \, dx

Calculating each term separately:

  • For x=482x2dx\int_{x=4}^{8} 2x^2 \, dx:

2x2dx=2x33\int 2x^2 \, dx = \frac{2x^3}{3}

Evaluate from 4 to 8:

[2(8)332(4)33]=2(512)32(64)3=102431283=8963\left[ \frac{2(8)^3}{3} - \frac{2(4)^3}{3} \right] = \frac{2(512)}{3} - \frac{2(64)}{3} = \frac{1024}{3} - \frac{128}{3} = \frac{896}{3}

  • For x=484y2dx\int_{x=4}^{8} 4y^2 \, dx:

4y2dx=4y2x\int 4y^2 \, dx = 4y^2 \cdot x

Evaluate from 4 to 8:

4y2(84)=16y24y^2 \cdot (8 - 4) = 16y^2

  • For x=481dx\int_{x=4}^{8} 1 \, dx:

1dx=x\int 1 \, dx = x

Evaluate from 4 to 8:

84=48 - 4 = 4

Thus, the integral with respect to xx becomes:

8963+16y2+4\frac{896}{3} + 16y^2 + 4

Step 2: Integrate with respect to yy

Now, integrate this result with respect to yy over the interval 2-2 to 1111:

y=211(8963+16y2+4)dy\int_{y=-2}^{11} \left(\frac{896}{3} + 16y^2 + 4\right) \, dy

This integral can be split as:

8963y=2111dy+16y=211y2dy+4y=2111dy\frac{896}{3} \int_{y=-2}^{11} 1 \, dy + 16 \int_{y=-2}^{11} y^2 \, dy + 4 \int_{y=-2}^{11} 1 \, dy

Evaluating each integral:

  • For 8963y=2111dy\frac{896}{3} \int_{y=-2}^{11} 1 \, dy:

8963(11(2))=896313=116483\frac{896}{3} \cdot (11 - (-2)) = \frac{896}{3} \cdot 13 = \frac{11648}{3}

  • For 16y=211y2dy16 \int_{y=-2}^{11} y^2 \, dy:

y2dy=y33\int y^2 \, dy = \frac{y^3}{3}

Evaluate from 2-2 to 1111:

[1133(2)33]=1331383=13393\left[\frac{11^3}{3} - \frac{(-2)^3}{3} \right] = \frac{1331}{3} - \frac{-8}{3} = \frac{1339}{3}

Multiply by 16:

1613393=21424316 \cdot \frac{1339}{3} = \frac{21424}{3}

  • For 4y=2111dy4 \int_{y=-2}^{11} 1 \, dy:

4(11(2))=413=524 \cdot (11 - (-2)) = 4 \cdot 13 = 52

Adding all these up:

V=116483+214243+52V = \frac{11648}{3} + \frac{21424}{3} + 52

Combine the fractions:

V=11648+214243+52=330723+52=11024+52=11076V = \frac{11648 + 21424}{3} + 52 = \frac{33072}{3} + 52 = 11024 + 52 = 11076

Final Answer

The volume of the solid is 11076.00\boxed{11076.00} cubic units, correct to two decimal places.

Would you like any more details or have any questions? Here are some related questions you might find interesting:

  1. How do you set up a double integral over a non-rectangular region?
  2. What changes if the function above the region is more complex?
  3. How do you interpret the physical meaning of this volume in different contexts?
  4. Can you extend this concept to triple integrals for volumes in 3D?
  5. What is the significance of the bounds in determining the volume?

Tip: Breaking down complex integrals into simpler parts helps in evaluating them step by step accurately.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Double integrals
Volume calculation

Formulas

Double integral setup and evaluation

Theorems

-

Suitable Grade Level

Advanced Mathematics