Math Problem Statement

(0.55)7=0.0313 isn't it equal to 0.0152

Solution

You are correct. Let's correct the calculation and recompute P(X=5)P(X = 5).

Given: P(X=5)=(125)(0.45)5(0.55)7P(X = 5) = \binom{12}{5} (0.45)^5 (0.55)^7

We need to correctly compute (0.55)7(0.55)^7:

(0.55)70.0152(0.55)^7 \approx 0.0152

Now, let's recompute P(X=5)P(X = 5) with the correct value:

(125)=12!5!7!=792\binom{12}{5} = \frac{12!}{5!7!} = 792

(0.45)50.0186(0.45)^5 \approx 0.0186

(0.55)70.0152(0.55)^7 \approx 0.0152

Now, recomputing:

P(X=5)=792×0.0186×0.0152P(X = 5) = 792 \times 0.0186 \times 0.0152

P(X=5)792×0.0186×0.01520.224P(X = 5) \approx 792 \times 0.0186 \times 0.0152 \approx 0.224

(ii) Calculate the probability that this batch contains more plants with white flowers than colored ones:

For more plants with white flowers than colored ones, X>6X > 6:

P(X>6)=k=712P(X=k)P(X > 6) = \sum_{k=7}^{12} P(X = k)

Let's calculate each term:

P(X=k)=(12k)(0.45)k(0.55)12kP(X = k) = \binom{12}{k} (0.45)^k (0.55)^{12-k}

We need to compute P(X=7),P(X=8),P(X=9),P(X=10),P(X=11),P(X = 7), P(X = 8), P(X = 9), P(X = 10), P(X = 11), and P(X=12)P(X = 12).

Corrected Calculations for P(X>6)P(X > 6)

Using the binomial formula:

P(X=7)=(127)(0.45)7(0.55)5P(X = 7) = \binom{12}{7} (0.45)^7 (0.55)^5 P(X=8)=(128)(0.45)8(0.55)4P(X = 8) = \binom{12}{8} (0.45)^8 (0.55)^4 P(X=9)=(129)(0.45)9(0.55)3P(X = 9) = \binom{12}{9} (0.45)^9 (0.55)^3 P(X=10)=(1210)(0.45)10(0.55)2P(X = 10) = \binom{12}{10} (0.45)^{10} (0.55)^2 P(X=11)=(1211)(0.45)11(0.55)1P(X = 11) = \binom{12}{11} (0.45)^{11} (0.55)^1 P(X=12)=(1212)(0.45)12(0.55)0P(X = 12) = \binom{12}{12} (0.45)^{12} (0.55)^0

  1. (127)=792\binom{12}{7} = 792, (0.45)70.00356(0.45)^7 \approx 0.00356, (0.55)50.0503(0.55)^5 \approx 0.0503 P(X=7)792×0.00356×0.05030.141P(X = 7) \approx 792 \times 0.00356 \times 0.0503 \approx 0.141

  2. (128)=495\binom{12}{8} = 495, (0.45)80.00160(0.45)^8 \approx 0.00160, (0.55)40.0915(0.55)^4 \approx 0.0915 P(X=8)495×0.00160×0.09150.072P(X = 8) \approx 495 \times 0.00160 \times 0.0915 \approx 0.072

  3. (129)=220\binom{12}{9} = 220, (0.45)90.00072(0.45)^9 \approx 0.00072, (0.55)30.1664(0.55)^3 \approx 0.1664 P(X=9)220×0.00072×0.16640.026P(X = 9) \approx 220 \times 0.00072 \times 0.1664 \approx 0.026

  4. (1210)=66\binom{12}{10} = 66, (0.45)100.00032(0.45)^{10} \approx 0.00032, (0.55)20.3025(0.55)^2 \approx 0.3025 P(X=10)66×0.00032×0.30250.0064P(X = 10) \approx 66 \times 0.00032 \times 0.3025 \approx 0.0064

  5. (1211)=12\binom{12}{11} = 12, (0.45)110.00014(0.45)^{11} \approx 0.00014, (0.55)10.55(0.55)^1 \approx 0.55 P(X=11)12×0.00014×0.550.0009P(X = 11) \approx 12 \times 0.00014 \times 0.55 \approx 0.0009

  6. (1212)=1\binom{12}{12} = 1, (0.45)120.00006(0.45)^{12} \approx 0.00006, (0.55)0=1(0.55)^0 = 1 P(X=12)1×0.00006×10.00006P(X = 12) \approx 1 \times 0.00006 \times 1 \approx 0.00006

Summing these probabilities:

P(X>6)0.141+0.072+0.026+0.0064+0.0009+0.000060.246P(X > 6) \approx 0.141 + 0.072 + 0.026 + 0.0064 + 0.0009 + 0.00006 \approx 0.246

Summary

  1. P(X=5)0.224P(X = 5) \approx 0.224
  2. P(X>6)0.246P(X > 6) \approx 0.246
  3. Mean μ=5.4\mu = 5.4
  4. Variance σ2=2.97\sigma^2 = 2.97

Would you like further details on any part or have any additional questions?

Feel free to ask questions or choose from the following:

  1. Detailed steps for computing P(X>6)P(X > 6)
  2. Explanation of the binomial coefficient calculation
  3. Calculation of higher order binomial probabilities
  4. Additional examples of binomial distribution problems
  5. Application of the binomial theorem in different contexts

Tip: When solving binomial distribution problems, always double-check intermediate calculations to ensure accuracy.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability
Binomial Distribution

Formulas

Binomial probability formula: P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}

Theorems

-

Suitable Grade Level

Advanced High School or College