Math Problem Statement

DataFrequency

50 - 54

1

55 - 59

1

60 - 64

3

65 - 69

6

70 - 74

6

75 - 79

8

80 - 84

15

85 - 89

18

90 - 94

10

mean = 

Solution

To calculate the mean (average) of the given data, follow these steps:

  1. Find the midpoint of each class interval (e.g., 50-54, 55-59, etc.).
  2. Multiply each midpoint by the frequency of that class interval.
  3. Sum the products from step 2.
  4. Divide the sum by the total frequency to find the mean.

Step 1: Calculate midpoints of each class interval

For each class interval, the midpoint is the average of the lower and upper bounds:

Midpoint=Lower bound+Upper bound2\text{Midpoint} = \frac{\text{Lower bound} + \text{Upper bound}}{2}

  • 50+542=52\frac{50 + 54}{2} = 52
  • 55+592=57\frac{55 + 59}{2} = 57
  • 60+642=62\frac{60 + 64}{2} = 62
  • 65+692=67\frac{65 + 69}{2} = 67
  • 70+742=72\frac{70 + 74}{2} = 72
  • 75+792=77\frac{75 + 79}{2} = 77
  • 80+842=82\frac{80 + 84}{2} = 82
  • 85+892=87\frac{85 + 89}{2} = 87
  • 90+942=92\frac{90 + 94}{2} = 92

Step 2: Multiply midpoints by frequencies

Now multiply each midpoint by its corresponding frequency:

  • 52×1=5252 \times 1 = 52
  • 57×1=5757 \times 1 = 57
  • 62×3=18662 \times 3 = 186
  • 67×6=40267 \times 6 = 402
  • 72×6=43272 \times 6 = 432
  • 77×8=61677 \times 8 = 616
  • 82×15=123082 \times 15 = 1230
  • 87×18=156687 \times 18 = 1566
  • 92×10=92092 \times 10 = 920

Step 3: Sum of the products

52+57+186+402+432+616+1230+1566+920=546152 + 57 + 186 + 402 + 432 + 616 + 1230 + 1566 + 920 = 5461

Step 4: Total frequency

The total frequency is: [ 1 + 1 + 3 + 6 + 6 + 8 +

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Mean Calculation
Grouped Data

Formulas

Midpoint = (Lower bound + Upper bound) / 2
Mean = Σ(midpoint * frequency) / Σ(frequency)

Theorems

-

Suitable Grade Level

Grades 9-12