Math Problem Statement

Calculate the electric force on a point charge -300 µC located at (2.4.5) due to another point charge 10 µC located at (1.1.3) placed in free space.

Solution

To calculate the electric force between two point charges in free space, we use Coulomb's Law, which is given by:

F=keq1q2r2r^\vec{F} = k_e \frac{q_1 q_2}{r^2} \hat{r}

Where:

  • ke=8.99×109Nm2/C2k_e = 8.99 \times 10^9 \, \mathrm{N \cdot m^2 / C^2} is Coulomb's constant,
  • q1=300μC=300×106Cq_1 = -300 \, \mu C = -300 \times 10^{-6} \, C,
  • q2=10μC=10×106Cq_2 = 10 \, \mu C = 10 \times 10^{-6} \, C,
  • r=(x2x1,y2y1,z2z1)\vec{r} = (x_2 - x_1, y_2 - y_1, z_2 - z_1) is the displacement vector from charge q1q_1 to charge q2q_2,
  • r=rr = \|\vec{r}\| is the magnitude of the displacement vector.

Step 1: Displacement Vector

The coordinates of q1q_1 and q2q_2 are:

  • q1q_1: (2,4,5)(2, 4, 5),
  • q2q_2: (1,1,3)(1, 1, 3).

The displacement vector is: r=(12,14,35)=(1,3,2).\vec{r} = (1 - 2, 1 - 4, 3 - 5) = (-1, -3, -2).


Step 2: Magnitude of the Displacement Vector

The magnitude of r\vec{r} is: r=(1)2+(3)2+(2)2=1+9+4=14.r = \sqrt{(-1)^2 + (-3)^2 + (-2)^2} = \sqrt{1 + 9 + 4} = \sqrt{14}.


Step 3: Unit Vector

The unit vector r^\hat{r} is: r^=rr=(1,3,2)14=(114,314,214).\hat{r} = \frac{\vec{r}}{r} = \frac{(-1, -3, -2)}{\sqrt{14}} = \left( -\frac{1}{\sqrt{14}}, -\frac{3}{\sqrt{14}}, -\frac{2}{\sqrt{14}} \right).


Step 4: Force Magnitude

The magnitude of the electric force is: F=keq1q2r2=(8.99×109)(300×106)(10×106)(14)2.|\vec{F}| = k_e \frac{|q_1 q_2|}{r^2} = (8.99 \times 10^9) \cdot \frac{|(-300 \times 10^{-6})(10 \times 10^{-6})|}{(\sqrt{14})^2}.

F=(8.99×109)3000×101214.|\vec{F}| = (8.99 \times 10^9) \cdot \frac{3000 \times 10^{-12}}{14}.

F=8.99×3×10314=26.97×10314=1.926N.|\vec{F}| = \frac{8.99 \times 3 \times 10^{-3}}{14} = \frac{26.97 \times 10^{-3}}{14} = 1.926 \, \mathrm{N}.


Step 5: Force Vector

The force vector is: F=Fr^=1.926(114,314,214).\vec{F} = |\vec{F}| \cdot \hat{r} = 1.926 \cdot \left( -\frac{1}{\sqrt{14}}, -\frac{3}{\sqrt{14}}, -\frac{2}{\sqrt{14}} \right).

Simplifying: F=(1.92614,31.92614,21.92614).\vec{F} = \left( -\frac{1.926}{\sqrt{14}}, -\frac{3 \cdot 1.926}{\sqrt{14}}, -\frac{2 \cdot 1.926}{\sqrt{14}} \right).

Numerically: F=(0.515,1.545,1.030)N.\vec{F} = (-0.515, -1.545, -1.030) \, \mathrm{N}.


Final Answer:

The electric force on the charge q1q_1 is: F=(0.515i^,1.545j^,1.030k^)N.\vec{F} = (-0.515 \, \hat{i}, -1.545 \, \hat{j}, -1.030 \, \hat{k}) \, \mathrm{N}.


Would you like further clarification or another example?

5 Related Questions:

  1. How would the force change if the charges were doubled?
  2. What would be the force if the charges were in a medium with relative permittivity ϵr\epsilon_r?
  3. How do you calculate the potential energy between two charges?
  4. What happens to the force if the distance between the charges is halved?
  5. How does the direction of the force depend on the signs of the charges?

Tip:

Always check the sign of the charges to determine if the force is attractive or repulsive.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Coulomb's Law
Vector Calculations
Electric Force

Formulas

F = ke * (q1 * q2) / r^2
Vector r = (x2 - x1, y2 - y1, z2 - z1)
Unit vector r̂ = r / |r|
Magnitude of a vector |r| = sqrt(x^2 + y^2 + z^2)

Theorems

Coulomb's Law

Suitable Grade Level

Undergraduate Physics or Advanced High School Physics