Math Problem Statement

How to calculate correlation coefficient in chart where it asks for x^2, y^2 and xy

Solution

The correlation coefficient (rr) measures the strength and direction of a linear relationship between two variables. When the chart provides the sums of x2x^2, y2y^2, xyxy, and other values (like Σx\Sigma x and Σy\Sigma y), you can calculate rr using the formula:

r=nΣxyΣxΣy(nΣx2(Σx)2)(nΣy2(Σy)2)r = \frac{n\Sigma xy - \Sigma x \Sigma y}{\sqrt{\left(n\Sigma x^2 - (\Sigma x)^2\right)\left(n\Sigma y^2 - (\Sigma y)^2\right)}}

Steps:

  1. Identify values: Gather the following from the chart:

    • nn: Number of data points
    • Σx\Sigma x: Sum of all xx values
    • Σy\Sigma y: Sum of all yy values
    • Σxy\Sigma xy: Sum of the product of each xx and yy
    • Σx2\Sigma x^2: Sum of the squares of xx
    • Σy2\Sigma y^2: Sum of the squares of yy
  2. Substitute values into the formula:

    • Calculate the numerator: nΣxyΣxΣyn\Sigma xy - \Sigma x \Sigma y
    • Calculate the denominator: (nΣx2(Σx)2)(nΣy2(Σy)2)\sqrt{\left(n\Sigma x^2 - (\Sigma x)^2\right)\left(n\Sigma y^2 - (\Sigma y)^2\right)}
  3. Compute rr: Divide the numerator by the denominator to find the correlation coefficient.

Example:

Suppose:

  • n=5n = 5,
  • Σx=15\Sigma x = 15,
  • Σy=20\Sigma y = 20,
  • Σxy=80\Sigma xy = 80,
  • Σx2=55\Sigma x^2 = 55,
  • Σy2=100\Sigma y^2 = 100.

Step-by-step:

  1. Numerator: nΣxyΣxΣy=5(80)(15)(20)=400300=100n\Sigma xy - \Sigma x \Sigma y = 5(80) - (15)(20) = 400 - 300 = 100

  2. Denominator: (nΣx2(Σx)2)(nΣy2(Σy)2)\sqrt{\left(n\Sigma x^2 - (\Sigma x)^2\right)\left(n\Sigma y^2 - (\Sigma y)^2\right)} Calculate each term:

    • nΣx2(Σx)2=5(55)(15)2=275225=50n\Sigma x^2 - (\Sigma x)^2 = 5(55) - (15)^2 = 275 - 225 = 50
    • nΣy2(Σy)2=5(100)(20)2=500400=100n\Sigma y^2 - (\Sigma y)^2 = 5(100) - (20)^2 = 500 - 400 = 100 So, the denominator is: 50100=500070.71\sqrt{50 \cdot 100} = \sqrt{5000} \approx 70.71
  3. Correlation coefficient: r=10070.711.41r = \frac{100}{70.71} \approx 1.41

If you receive a number like r>1r > 1 or r<1r < -1, double-check your calculations, as rr should always lie between 1-1 and 11.


Would you like me to demonstrate on your own data or explain more? 😊


5 Related Questions:

  1. What does the correlation coefficient tell us about a dataset?
  2. How is the coefficient of determination (r2r^2) related to rr?
  3. How does changing one data point affect rr?
  4. Can you calculate rr without a chart? If so, how?
  5. What assumptions are made when using the Pearson correlation coefficient?

Tip: Always plot your data first to check for linear relationships before computing rr.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Correlation Coefficient
Linear Relationship

Formulas

r = (nΣxy - ΣxΣy) / √((nΣx² - (Σx)²)(nΣy² - (Σy)²))

Theorems

Pearson Correlation Coefficient

Suitable Grade Level

Grades 10-12