Math Problem Statement

My capital is Rs. 477,79,69,158. If I earn 10% interest every month, what will be my capital after 1 year if I compound every month

Solution

To find the capital after 1 year with a 10% interest rate compounded monthly, we'll use the same compound interest formula:

A=P(1+r)nA = P \left(1 + r\right)^{n}

Where:

  • P=477,79,69,158P = 477,79,69,158 Rs
  • r=0.10r = 0.10 (10% per month)
  • n=12n = 12 (12 months in a year)

Let's calculate it:

A=477,79,69,158×(1+0.10)12A = 477,79,69,158 \times (1 + 0.10)^{12}After 1 year, with a 10% monthly interest rate compounded monthly, your capital would grow to approximately Rs. 1,49,95,31,3988.56.

Would you like more details or have any questions? Here are some related questions you might find interesting:

  1. How does the capital change if the interest rate is 8% per month instead of 10%?
  2. What would the capital be after 2 years with the same interest rate and compounding frequency?
  3. How does this capital compare to a situation where interest is compounded annually?
  4. What would the monthly compounded interest rate equivalent to an annual rate of 120% be?
  5. How much interest is earned after 6 months with the given conditions?

Tip: Understanding the impact of compounding frequency is crucial in financial planning, as more frequent compounding can significantly increase returns over time.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Compound Interest
Exponential Growth

Formulas

Compound Interest Formula

Theorems

-

Suitable Grade Level

High School