Math Problem Statement

solve 1

Solution

To determine the centroid of the built-up section in the given figure, we need to consider the individual rectangles that make up the shape and then calculate the centroid of the entire structure by taking the weighted average of the centroids of these individual parts. The steps are as follows:

  1. Identify individual sections: The figure consists of three rectangles.

    • Rectangle 1: Bottom horizontal rectangle (width 120120 mm, height 2020 mm).
    • Rectangle 2: Vertical rectangle (width 2020 mm, height 8080 mm).
    • Rectangle 3: Top horizontal rectangle (width 100100 mm, height 1010 mm).
  2. Calculate the area and centroid of each rectangle:

    • Rectangle 1: A1=120×20=2400mm2A_1 = 120 \times 20 = 2400 \, \text{mm}^2 Centroid (from the origin OO): xˉ1=1202=60mm\bar{x}_1 = \frac{120}{2} = 60 \, \text{mm} yˉ1=202=10mm\bar{y}_1 = \frac{20}{2} = 10 \, \text{mm}

    • Rectangle 2: A2=20×80=1600mm2A_2 = 20 \times 80 = 1600 \, \text{mm}^2 Centroid (from the origin OO): xˉ2=40+202=50mm\bar{x}_2 = 40 + \frac{20}{2} = 50 \, \text{mm} yˉ2=20+802=60mm\bar{y}_2 = 20 + \frac{80}{2} = 60 \, \text{mm}

    • Rectangle 3: A3=100×10=1000mm2A_3 = 100 \times 10 = 1000 \, \text{mm}^2 Centroid (from the origin OO): xˉ3=10+1002=60mm\bar{x}_3 = 10 + \frac{100}{2} = 60 \, \text{mm} yˉ3=20+80+102=105mm\bar{y}_3 = 20 + 80 + \frac{10}{2} = 105 \, \text{mm}

  3. Calculate the combined centroid of the structure:

    • Total area: A=A1+A2+A3=2400+1600+1000=5000mm2A = A_1 + A_2 + A_3 = 2400 + 1600 + 1000 = 5000 \, \text{mm}^2

    • xˉ\bar{x}-coordinate of the centroid: xˉ=A1xˉ1+A2xˉ2+A3xˉ3A=2400×60+1600×50+1000×605000\bar{x} = \frac{A_1 \bar{x}_1 + A_2 \bar{x}_2 + A_3 \bar{x}_3}{A} = \frac{2400 \times 60 + 1600 \times 50 + 1000 \times 60}{5000} xˉ=144000+80000+600005000=2840005000=56.8mm\bar{x} = \frac{144000 + 80000 + 60000}{5000} = \frac{284000}{5000} = 56.8 \, \text{mm}

    • yˉ\bar{y}-coordinate of the centroid: yˉ=A1yˉ1+A2yˉ2+A3yˉ3A=2400×10+1600×60+1000×1055000\bar{y} = \frac{A_1 \bar{y}_1 + A_2 \bar{y}_2 + A_3 \bar{y}_3}{A} = \frac{2400 \times 10 + 1600 \times 60 + 1000 \times 105}{5000} yˉ=24000+96000+1050005000=2250005000=45mm\bar{y} = \frac{24000 + 96000 + 105000}{5000} = \frac{225000}{5000} = 45 \, \text{mm}

The coordinates of the centroid are: xˉ=56.8mm,yˉ=45mm\bar{x} = 56.8 \, \text{mm}, \quad \bar{y} = 45 \, \text{mm}

If you have any questions or need more details, feel free to ask!

Here are 5 questions you might find interesting:

  1. How do you find the centroid of more complex shapes?
  2. What is the significance of the centroid in engineering applications?
  3. How does the method change for finding the centroid of a three-dimensional object?
  4. Can you explain the concept of the center of mass and how it relates to the centroid?
  5. How do you calculate the moment of inertia for composite areas?

Tip: Always break down complex shapes into simpler components to make calculations easier and more accurate.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Centroid Calculation

Formulas

Centroid formula for composite shapes

Theorems

-

Suitable Grade Level

College Level