Math Problem Statement

Latura A are 7,36 m

Latura B are 5 m

Latura C are 8,9 m

 Latura D are 4,2 m

Intre latura A si B avem unghi de 90 de grade.

Intre latura A si D avem unghi de 90 de grade.

Calculeaza aria patrulaterului.

Solution

Avem un patrulater cu două unghiuri drepte între laturile A și B, respectiv între laturile A și D. Putem împărți acest patrulater în două triunghiuri dreptunghice și calcula aria pe baza acestora.

Patrulaterul are două unghiuri de 90°, ceea ce ne permite să tratăm laturile A, B și D ca formând două dreptunghiuri sau triunghiuri dreptunghice care sunt adiacente.

Pasul 1: Împărțirea patrulaterului

Imaginând că patrulaterul este împărțit în două triunghiuri dreptunghice:

  1. Triunghiul 1 are laturile A (7,36 m) și B (5 m).
  2. Triunghiul 2 are laturile A (7,36 m) și D (4,2 m).

Pasul 2: Calcularea ariilor

  • Aria triunghiului dreptunghic este dată de formula:

Atriunghi=12×Latura 1×Latura 2A_{\text{triunghi}} = \frac{1}{2} \times \text{Latura 1} \times \text{Latura 2}

Aria Triunghiului 1:

A1=12×7,36×5=18,4m2A_1 = \frac{1}{2} \times 7,36 \times 5 = 18,4 \, \text{m}^2

Aria Triunghiului 2:

A2=12×7,36×4,2=15,456m2A_2 = \frac{1}{2} \times 7,36 \times 4,2 = 15,456 \, \text{m}^2

Pasul 3: Aria totală

Adunăm ariile celor două triunghiuri:

Atotal=A1+A2=18,4+15,456=33,856m2A_{\text{total}} = A_1 + A_2 = 18,4 + 15,456 = 33,856 \, \text{m}^2

Aria patrulaterului este aproximativ 33,86 m².

Dorești mai multe detalii sau ai întrebări?


  1. Cum afectează unghiurile diferite de 90° aria unui patrulater?
  2. Ce alte metode de calcul al ariei patrulaterelor complexe există?
  3. Cum se calculează aria unui patrulater folosind diagonale și unghiuri?
  4. Cum se aplică teorema lui Pitagora în cazul unui patrulater dreptunghic?
  5. Cum afectează diagonalele lungimea și aria unui patrulater?

Tip: Când ai un patrulater cu unghiuri drepte, împărțirea în triunghiuri dreptunghice este o metodă eficientă pentru calcularea ariei.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Area Calculation
Right-Angle Triangles

Formulas

Area of a triangle = 1/2 × base × height

Theorems

Pythagorean Theorem

Suitable Grade Level

Grades 7-10